Pág.47 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php El procedimiento simetríaCuadrado (1) está compuesto solamente por una estructura secuencial que realiza el dibujo de un cuadrado cuyos lados miden 100. para simetríaCuadricula simetríaCuadrado izquierda 90 simetríaCuadrado izquierda 90 simetríaCuadrado izquierda 90 simetríaCuadrado izquierda 90 fin El procedimiento simetríaCuadricula (2) está compuesto por una estructura secuencial que dibuja cuatro cuadrados con lados adyacentes entre sí. Esta es una figura simétrica ya que si se dobla por la mitad, ambas mitades coinciden. Para construir esta cuadricula no fue necesario escribir un procedimiento con el código para dibujar cuadro cuadrados; en realidad, el procedimiento simetríaCuadricula no realiza ningún dibujo, lo que hace es llamar cuatro veces el procedimiento simetríaCuadrado que es el que realmente dibuja un cuadrado cada vez que se invoca. Para que los cuadrados sean adyacentes, se necesita girar la tortuga 90 grados a la izquierda después de cada llamada al procedimiento simetríaCuadrado. para simetríaEstrella limpia cp simetríaCuadricula derecha 45 simetríaCuadricula fin El procedimiento simetríaEstrella (3) también está compuesto únicamente por una estructura secuencial que permite dibujar una estrella perfectamente simétrica. Este procedimiento llama dos veces al procedimiento simetríaCuadricula que a su vez, cada que es invocado, llama cuatro veces al procedimiento simetríaCuadrado. Para lograr el efecto de estrella, luego de llamar la primera vez al procedimiento simetríaCuadricula, se gira la tortuga 45 grados, antes de llamar el mismo procedimiento por segunda vez. Las siguientes son las instrucciones equivalentes en Scratch para elaborar la misma estrella:
Pág.48 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php http://scratch.mit.edu/projects/jualop/42800 Muchos estudiantes logran construir la figura del procedimiento simetríaEstrella utilizando gran cantidad de comandos que se repiten sin estructura alguna (mediante experimentación). Es muy importante que ellos reflexionen sobre las ventajas que ofrecen los procedimientos cuando se los utiliza a manera de objetos que cumplen con una función determinada (dibujar un cuadrado, calcular un área, etc). Una tarea que debe realizarse varias veces es candidata ideal para tratarla como un procedimiento. Con la utilización de parámetros se pueden cambiar algunos valores cada vez que se ejecute esa tarea. De esta manera, si necesitamos dibujar varios cuadrados de diferentes tamaños, lo más adecuado será construir un procedimiento con el valor de Lado como parámetro y ejecutarlo varias veces asignando a este el valor del Lado del cuadro a dibujar, cada vez que se ejecute (ver el ejemplo 3-4). Este ejemplo ilustra la construcción de figuras simétricas mediante la utilización de procedimientos invocados desde otros procedimientos. El concepto de simetría es muy importante tanto en disciplinas como matemáticas y arte como en la cultura general del estudiante. La programación de computadores puede apoyar muy efectivamente el afianzamiento en el niño del concepto que este tiene de simetría, alcanzado en forma intuitiva a través del espejo. “Los espejos son para los niños su primera experiencia y permiten examinar muchos aspectos de las simetrías. Se puede uno preguntar acerca de la inversión mutua entre derecha e izquierda, acerca de las distancias entre el objeto y su imagen en el espejo, lo que ocurre cuando se mueve el objeto o se mueve el espejo, o lo que ocurre cuando estos giran” Fletchet, T. J. citado por Cajaraville (1989). Por otra parte, la construcción de figuras como estas requiere un dominio espacial del estudiantes ya que es mucho más difícil reproducir una acción correctamente en el pensamiento que llevarla a cabo en el nivel de la conducta. Por ejemplo, es más sencillo moverse de un lugar a otro en un espacio físico o dar vueltas en torno a objetos que representar mentalmente esos movimientos con precisión o representarlos en un plano e invertir mentalmente las posiciones de los objetos haciendo girar el plano (Piaget,1993). Por último, en este ejemplo se utilizan más comandos de los que realmente se requieren. Como el objetivo no es presentar códigos optimizados sino más bien que el estudiante se familiarice con los comandos disponibles, más adelante, cuando se vea la estructura repetitiva, el docente puede repetir este ejemplo y utilizar el comando “repetir”. Posteriormente, promover la reflexión de los estudiantes sobre la optimización del código y las múltiples maneras que hay en programación para realizar la misma tarea. EJEMPLO 3-6 Escribir un procedimiento para calcular el área de cualquier triángulo rectángulo. En él se debe pedir al usuario que ingrese los valores de la Altura y la Base del triángulo. R/. ANÁLISIS DEL PROBLEMA Formular el problema: Ya está claramente planteado. Resultados esperados: Un procedimiento que permita calcular el área de cualquier triángulo rectángulo. Datos disponibles: Base y Altura del triángulo (se deben solicitar al usuario). El estudiante debe preguntarse si sus conocimientos actuales de matemáticas le permiten resolver este problema; de no ser así, debe plantear una estrategia para obtener los conocimientos requeridos. Restricciones: Los valores de base y altura son variables y se deben solicitar al usuario. Procesos necesarios: definir variables; asignar el valor 2 a la constante div; solicitar al usuario el valor de la altura del triángulo; solicitar al usuario el valor de la base; aplicar la fórmula de área; mostrar el resultado.
Created with BuildVu