Pág.9 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php El puntaje que obtuvo Andrés es 23 puntos. Verificar las operaciones y comparar los cálculos con la solución estimada. El anterior es un problema típico en clase de matemáticas. Es muy importante que los estudiantes reflexionen sobre las actividades que realizan para solucionarlo (metacognición) y las agrupen de acuerdo a las etapas que contenga la estrategia de solución empleada. ACTIVIDAD En la academia de las ciencias sociales hay dos grupos de materias: Geografía, con 124 alumnos; Historia, con 220; y Educación Ambiental, con 185. Si hay 25 alumnos que estudian Geografía y Educación Ambiental, 37 que estudian Educación Ambiental e Historia, y ninguno toma las tres materias, ¿cuántos alumnos tiene la academia? (Adaptado de Melo, 2001, página 46). El estudiante debe tener en cuenta (y anotar) las actividades que realiza para resolver este problema y agruparlas en cada una de las cuatro etapas propuestas por Polya (comprende, planea, resuelve y revisa). Para resolver este problema, los estudiantes deben tener conocimientos sobre conjuntos (representación, clasificación e intersección). Es buena idea que construyan una tabla para organizar la información y un diagrama de Venn para representar los datos. Establecer un modelo para solucionar problemas es un paso fundamental pero no suficiente. Según Clements & Meredith (1992) y Zemelman, Daniels & Hyde (1998) y otros, los docentes deben adoptar una serie de buenas prácticas con el fin de ayudar a los estudiantes a desarrollar habilidades para resolver problemas: Plantear verbalmente problemas con variedad de estructuras y de formas de solución. Presentar diversas estrategias de solución de problemas. Asignar problemas que tengan aplicación en la vida diaria. Ofrecer experiencias que estimulen la curiosidad de los estudiantes y construyan confianza en la investigación, la solución de problemas y la comunicación. Permitir a los estudiantes tomar la iniciativa en el planteamiento de preguntas e investigaciones que les interesen. Hacer preguntas que involucren pensamiento de orden superior. Verificar que los estudiantes son conscientes de las estrategias que deben utilizar y de los procesos que deben aprender. Plantear problemas que proporcionen contextos en los que se aprendan conceptos y habilidades. Proveer ejemplos de cómo los conceptos y habilidades utilizados podrían aplicarse en otros contextos. Promover, de manera creciente, la abstracción y la generalización mediante la reflexión y la experimentación. Fomentar la utilización de representaciones visuales que favorezcan la comprensión de conceptos (diagramas de flujo, mapas conceptuales, diagramas de Venn, etc). Dar retroalimentación personalizada en consideración al esfuerzo hecho por los estudiantes para solucionar problemas. Verificar que una cantidad importante de la instrucción ocurra en grupos pequeños o en situaciones de uno a uno. Ventilar los errores y malentendidos más comunes. Promover la interacción tanto estudiante-docente, como estudiante-estudiante. Los niños son los mejores maestros de otros niños en cosas tan importantes para ellos como el aprendizaje de diversos juegos (Savater, 1996). Ofrecer actividades que den oportunidad a los estudiantes de discutir, hacer conjeturas, sacar conclusiones, defender ideas y escribir conceptualizaciones. Proporcionar oportunidades para realizar trabajo reflexivo y colaborativo entre estudiantes. Solución de problemas y programación Desde el punto de vista educativo, la solución de problemas mediante la programación de computadores posibilita la activación de una amplia variedad de estilos de aprendizaje. Los estudiantes pueden encontrar diversas maneras de abordar problemas y plantear soluciones, al tiempo que desarrollan habilidades para: visualizar caminos de razonamiento divergentes, anticipar errores, y evaluar rápidamente diferentes escenarios mentales (Stager, 2003). Ilustración 1-2(a): Área de trabajo de MicroMundos EX (interfaz del programa) Quienes han utilizado Logo con estudiantes de básica primaria (especialmente con grados 3º a 5º - 8 a 11
Pág.10 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php años) habrán podido observar la facilidad con que ellos se familiarizan con la interfaz del programa y la utilizan para darle instrucciones a la tortuga. Por ejemplo, utilizan el “centro de mando” (área de comandos) para introducir manualmente, una a una, las instrucciones para construir un rectángulo. Esta forma de utilizar Logo promueve la exploración y permite al estudiante ver inmediatamente cuál es el efecto que produce cada instrucción ejecutada. Ilustración 1-2(b): Área de trabajo de Scratch Versión 1.4 (interfaz del programa) EJEMPLO Pedir a los estudiantes que escriban en el “Centro de Mando” las instrucciones para dibujar un rectángulo con las siguientes medidas: Lado1= 80; Lado2=120. MicroMundos cp adelante 80 derecha 90 adelante 120 derecha 90 adelante 80 derecha 90 adelante 120 Scratch El Centro de Mando de MicroMundos no tiene equivalente en Scratch. A medida que el estudiante introduce cada una de estas instrucciones se dibuja cada uno de los lados que conforman el rectángulo. NOTA: Ver en el Anexo 1 un resumen de las primitivas (comandos e instrucciones) de MicroMundos y de Scratch utilizadas en esta guía. Sin embargo, en esta guía se utilizará el “área de procedimientos” de MicroMundos para programar el computador. Los procedimientos son módulos con instrucciones que se inician con el comando “para” y que el computador ejecuta automáticamente, una tras otra, hasta encontrar el comando “fin”. Emplear Logo de esta manera exige que el estudiante piense en todos los comandos que conforman un procedimiento antes de escribirlo, ejecutarlo y comprobar si produce el resultado esperado. Así, Logo promueve lo que Piaget (1964) denominó “la conquista de la difícil conducta de la reflexión” que se inicia a partir de los siete u ocho años cuando niños y niñas dejan de actuar por impulso y empiezan a pensar antes de proceder. Además, demanda de los estudiantes planificar, formular hipótesis y anticipar qué sucederá. EJEMPLO Pedir a los estudiantes que escriban un procedimiento para dibujar un rectángulo con unas medidas determinadas (Lado1= 80; Lado2=120), implica que ellos deben pensar en algo muy parecido a lo siguiente (y escribirlo): MicroMundos para rectángulo cp adelante 80 derecha 90 adelante 120 derecha 90 adelante 80 derecha 90 adelante 120 Fin Scratch Cuando se invoca este procedimiento escribiendo “rectángulo” en el “Centro de Mando” de MicroMundos o haciendo clic en la bandera verde de Scratch, el computador ejecuta automáticamente y en orden consecutiva, las instrucciones que se encuentran entre “para rectángulo” [to rectangulo] y “fin” [end] (MicroMundos) o debajo de la instrucción [al presionar bandera verde]. Antes de escribir el anterior procedimiento, los estudiantes deben analizar la figura geométrica que desean construir, describirla y reflexionar acerca de cómo se unen sus partes (dos pares de lados paralelos de igual longitud y cuatro ángulos iguales de 90 grados). Deben explicar el todo mediante la composición de las partes, y esta composición supone, por tanto, la existencia de autenticas operaciones de segmentación o partición y de operaciones inversas de reunión o adición, así como desplazamientos por separación o concentración (Piaget, 1964). Pedir a los estudiantes que escriban un procedimiento más general para dibujar cualquier rectángulo, significa que ellos deben tratar las dimensiones de la figura como variables (Lado1= ?; Lado2= ?) y no como constantes (Lado1= 80; Lado2= 120). Además, deben construir una definición de rectángulo que el computador entienda; de esta manera, empiezan a construir conocimiento intuitivo acerca de la definición de esta figura geométrica, conocimiento que luego pueden formalizar en una definición abstracta de la misma (Clements & Meredith, 1992). Adicionalmente, la programación de computadores compromete a los estudiantes en varios aspectos importantes de la solución de problemas: decidir sobre la naturaleza del problema, seleccionar una representación que les ayude a resolverlo, y monitorear sus propios pensamientos (metacognición) y estrategias
Created with BuildVu