Pág.9 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php
• El puntaje que obtuvo Andrés es 23 puntos.
• Verificar las operaciones y comparar los cálculos con la solución
estimada.
El anterior es un problema típico en clase de
matemáticas. Es muy importante que los estudiantes
reflexionen sobre las actividades que realizan para
solucionarlo (metacognición) y las agrupen de acuerdo a
las etapas que contenga la estrategia de solución
empleada.
ACTIVIDAD
En la academia de las ciencias sociales hay dos grupos de materias:
Geografía, con 124 alumnos; Historia, con 220; y Educación
Ambiental, con 185. Si hay 25 alumnos que estudian Geografía y
Educación Ambiental, 37 que estudian Educación Ambiental e
Historia, y ninguno toma las tres materias, ¿cuántos alumnos tiene la
academia? (Adaptado de Melo, 2001, página 46).
El estudiante debe tener en cuenta (y anotar) las actividades que
realiza para resolver este problema y agruparlas en cada una de las
cuatro etapas propuestas por Polya (comprende, planea, resuelve y
revisa). Para resolver este problema, los estudiantes deben tener
conocimientos sobre conjuntos (representación, clasificación e
intersección). Es buena idea que construyan una tabla para
organizar la información y un diagrama de Venn para representar los
datos.
Establecer un modelo para solucionar problemas es un
paso fundamental pero no suficiente. Según Clements &
Meredith (1992) y Zemelman, Daniels & Hyde (1998) y
otros, los docentes deben adoptar una serie de buenas
prácticas con el fin de ayudar a los estudiantes a
desarrollar habilidades para resolver problemas:
• Plantear verbalmente problemas con variedad de
estructuras y de formas de solución.
• Presentar diversas estrategias de solución de
problemas.
• Asignar problemas que tengan aplicación en la vida
diaria.
• Ofrecer experiencias que estimulen la curiosidad de
los estudiantes y construyan confianza en la
investigación, la solución de problemas y la
comunicación.
• Permitir a los estudiantes tomar la iniciativa en el
planteamiento de preguntas e investigaciones que les
interesen.
• Hacer preguntas que involucren pensamiento de
orden superior.
• Verificar que los estudiantes son conscientes de las
estrategias que deben utilizar y de los procesos que
deben aprender.
• Plantear problemas que proporcionen contextos en
los que se aprendan conceptos y habilidades.
• Proveer ejemplos de cómo los conceptos y
habilidades utilizados podrían aplicarse en otros
contextos.
• Promover, de manera creciente, la abstracción y la
generalización mediante la reflexión y la
experimentación.
• Fomentar la utilización de representaciones visuales
que favorezcan la comprensión de conceptos
(diagramas de flujo, mapas conceptuales, diagramas
de Venn, etc).
• Dar retroalimentación personalizada en
consideración al esfuerzo hecho por los estudiantes
para solucionar problemas.
• Verificar que una cantidad importante de la
instrucción ocurra en grupos pequeños o en
situaciones de uno a uno.
• Ventilar los errores y malentendidos más comunes.
• Promover la interacción tanto estudiante-docente,
como estudiante-estudiante. Los niños son los
mejores maestros de otros niños en cosas tan
importantes para ellos como el aprendizaje de
diversos juegos (Savater, 1996).
• Ofrecer actividades que den oportunidad a los
estudiantes de discutir, hacer conjeturas, sacar
conclusiones, defender ideas y escribir
conceptualizaciones.
• Proporcionar oportunidades para realizar trabajo
reflexivo y colaborativo entre estudiantes.
Solución de problemas y programación
Desde el punto de vista educativo, la solución de
problemas mediante la programación de computadores
posibilita la activación de una amplia variedad de estilos
de aprendizaje. Los estudiantes pueden encontrar
diversas maneras de abordar problemas y plantear
soluciones, al tiempo que desarrollan habilidades para:
visualizar caminos de razonamiento divergentes,
anticipar errores, y evaluar rápidamente diferentes
escenarios mentales (Stager, 2003).
Ilustración 1-2(a): Área de trabajo de MicroMundos EX
(interfaz del programa)
Quienes han utilizado Logo con estudiantes de básica
primaria (especialmente con grados 3º a 5º - 8 a 11
Pág.10 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php
años) habrán podido observar la facilidad con que ellos
se familiarizan con la interfaz del programa y la utilizan
para darle instrucciones a la tortuga. Por ejemplo,
utilizan el “centro de mando” (área de comandos) para
introducir manualmente, una a una, las instrucciones
para construir un rectángulo. Esta forma de utilizar Logo
promueve la exploración y permite al estudiante ver
inmediatamente cuál es el efecto que produce cada
instrucción ejecutada.
Ilustración 1-2(b): Área de trabajo de Scratch Versión 1.4
(interfaz del programa)
EJEMPLO
Pedir a los estudiantes que escriban en el “Centro de Mando” las
instrucciones para dibujar un rectángulo con las siguientes medidas:
Lado1= 80; Lado2=120.
MicroMundos
cp
adelante 80
derecha 90
adelante 120
derecha 90
adelante 80
derecha 90
adelante 120
Scratch
El Centro de Mando de
MicroMundos no tiene
equivalente en Scratch.
A medida que el estudiante introduce cada una de estas
instrucciones se dibuja cada uno de los lados que conforman el
rectángulo.
NOTA: Ver en el Anexo 1 un resumen de las primitivas (comandos e
instrucciones) de MicroMundos y de Scratch utilizadas en esta guía.
Sin embargo, en esta guía se utilizará el “área de
procedimientos” de MicroMundos para programar el
computador. Los procedimientos son módulos con
instrucciones que se inician con el comando “para” y que
el computador ejecuta automáticamente, una tras otra,
hasta encontrar el comando “fin”. Emplear Logo de esta
manera exige que el estudiante piense en todos los
comandos que conforman un procedimiento antes de
escribirlo, ejecutarlo y comprobar si produce el resultado
esperado. Así, Logo promueve lo que Piaget (1964)
denominó “la conquista de la difícil conducta de la
reflexión” que se inicia a partir de los siete u ocho años
cuando niños y niñas dejan de actuar por impulso y
empiezan a pensar antes de proceder. Además,
demanda de los estudiantes planificar, formular hipótesis
y anticipar qué sucederá.
EJEMPLO
Pedir a los estudiantes que escriban un procedimiento para dibujar
un rectángulo con unas medidas determinadas (Lado1= 80;
Lado2=120), implica que ellos deben pensar en algo muy parecido a
lo siguiente (y escribirlo):
MicroMundos
para rectángulo
cp
adelante 80
derecha 90
adelante 120
derecha 90
adelante 80
derecha 90
adelante 120
Fin
Scratch
Cuando se invoca este procedimiento escribiendo “rectángulo” en el
“Centro de Mando” de MicroMundos o haciendo clic en la bandera
verde de Scratch, el computador ejecuta automáticamente y en
orden consecutiva, las instrucciones que se encuentran entre “para
rectángulo” [to rectangulo] y “fin” [end] (MicroMundos) o debajo de la
instrucción [al presionar bandera verde]. Antes de escribir el anterior
procedimiento, los estudiantes deben analizar la figura geométrica
que desean construir, describirla y reflexionar acerca de cómo se
unen sus partes (dos pares de lados paralelos de igual longitud y
cuatro ángulos iguales de 90 grados). Deben explicar el todo
mediante la composición de las partes, y esta composición supone,
por tanto, la existencia de autenticas operaciones de segmentación o
partición y de operaciones inversas de reunión o adición, así como
desplazamientos por separación o concentración (Piaget, 1964).
Pedir a los estudiantes que escriban un procedimiento
más general para dibujar cualquier rectángulo, significa
que ellos deben tratar las dimensiones de la figura como
variables (Lado1= ?; Lado2= ?) y no como constantes
(Lado1= 80; Lado2= 120). Además, deben construir una
definición de rectángulo que el computador entienda; de
esta manera, empiezan a construir conocimiento intuitivo
acerca de la definición de esta figura geométrica,
conocimiento que luego pueden formalizar en una
definición abstracta de la misma (Clements & Meredith,
1992).
Adicionalmente, la programación de computadores
compromete a los estudiantes en varios aspectos
importantes de la solución de problemas: decidir sobre
la naturaleza del problema, seleccionar una
representación que les ayude a resolverlo, y monitorear
sus propios pensamientos (metacognición) y estrategias