Pág.13 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php ¿Puedo agrupar los datos en categorías? Otro aspecto importante del estado inicial hace referencia al nivel de conocimiento que el estudiante posee en el ámbito del problema que está tratando de resolver. Es conveniente que el estudiante se pregunte a sí mismo: ¿Qué conocimientos tengo en el área o áreas del problema? ¿Son suficientes esos conocimientos? ¿Dónde puedo obtener el conocimiento que necesito para resolver el problema? ¿Mis compañeros de estudio me pueden ayudar a clarificar mis dudas? ¿Qué expertos en el tema puedo consultar? En el ámbito de las matemáticas, se conoce como conocimiento condicional a aquel que activan los estudiantes cuando aplican procedimientos matemáticos concretos de manera intencional y consciente a ciertas situaciones. “El conocimiento condicional proporciona al alumno un sistema de valoración sobre la extensión y las limitaciones de su saber (qué sabe sobre el tema, su capacidad de memoria, etc), a la vez que examina la naturaleza de la demanda del profesor y su objetivo último, y evalúa variables externas como pueden ser el tiempo que tiene o con quién realiza la tarea” (Orubia & Rochera & Barberà, 2001). EJEMPLO Esteban está ahorrando para comprar una patineta que vale 55.000 pesos. Su papá le ha dado una mesada de 5.000 pesos durante 7 semanas. Por lavar el auto de su tío tres veces recibió 8.000 pesos. Su hermano ganó 10.000 pesos por hacer los mandados de su mamá y 4.000 por sacar a pasear el perro. ¿Esteban tiene ahorrado el dinero suficiente para comprar la patineta o aún le falta? (Adaptado de Casasbuenas & Cifuentes (1998b), página 23). R/. Formular el problema: Ya se encuentra claramente planteado. Resultados esperados: Si o no tiene Esteban ahorrado el dinero suficiente para comprar una patineta que vale 55.000 pesos. Datos disponibles: Los ingresos de Esteban: 5.000 pesos por 7 semanas + 8.000 pesos. Los 10.000 y 4.000 pesos qué ganó el hermano de Esteban son irrelevantes para la solución de este problema y se pueden omitir. Determinar las restricciones Resulta fundamental que los estudiantes determinen aquello que está permitido o prohibido hacer y/o utilizar para llegar a una solución. En este punto se deben exponer las necesidades y restricciones (no una propuesta de solución). El estudiante debe preguntarse: ¿Qué condiciones me plantea el problema? ¿Qué está prohibido hacer y/o utilizar? ¿Qué está permitido hacer y/o utilizar? ¿Cuáles datos puedo considerar fijos (constantes) para simplificar el problema? ¿Cuáles datos son variables? ¿Cuáles datos debo calcular? Establecer procesos (operaciones) Consiste en determinar los procesos que permiten llegar a los resultados esperados a partir de los datos disponibles. El estudiante debe preguntarse: ¿Qué procesos necesito? ¿Qué fórmulas debo emplear? ¿Cómo afectan las condiciones a los procesos? ¿Qué debo hacer? ¿Cuál es el orden de lo que debo hacer? En la medida de lo posible, es aconsejable dividir el problema original en otros más pequeños y fáciles de solucionar (submetas), hasta que los pasos para alcanzarlas se puedan determinar con bastante precisión (módulos). Esto es lo que en programación se denomina diseño descendente o top-down (Joyanes, 2001). El diseño descendente se utiliza en la programación estructurada de computadores debido a que facilita: La comprensión del problema Las modificaciones en los módulos La verificación de la solución Al realizar divisiones sucesivas del problema en otros más pequeños y manejables (módulos), hay que tener cuidado para no perder de vista la comprensión de este como un todo. El estudiante, luego de dividir el problema original en submetas (módulos), debe integrar cada parte de tal forma que le permita comprender el problema como un todo (Woolfolk, 1999). Igualmente hay que tener cuidado cuando se utiliza este enfoque para resolver problemas complejos o extensos, en cuyo caso resulta más aconsejable utilizar una metodología orientada a objetos. Especialmente, cuando profesores universitarios manifiestan su preocupación por el aprendizaje de malas prácticas de programación en el colegio. Hay casos en los cuales algunos estudiantes no han podido cambiar su forma de pensar “estructurada” por otra orientada a objetos, la cual hace parte de los programas universitarios modernos en la carrera de Ingeniería de Sistemas. Es aconsejable que los ejemplos y actividades planteados a los estudiantes contengan solo un problema cuya solución sea muy corta (no necesariamente sencillo de resolver). De esta forma ellos podrán enfocarse en aplicar completamente la metodología propuesta para analizar problemas (formular el problema, especificar los resultados, identificar la información disponible, determinar las restricciones y definir los procesos) sin perderse en el laberinto de un problema demasiado complejo. Las operaciones para llegar a los resultados esperados se implementan en Logo mediante procedimientos. Por ejemplo, si se desea producir un software para trabajar con figuras geométricas de diferentes tipos, el triángulo rectángulo será uno de los objetos a tener en cuenta y este a su vez, debe prestar los siguientes servicios (Jiménez, 2002):
Created with BuildVu