buscar Buscar en RED Descartes    

Mostrando artículos por etiqueta: bachillerato

 

Pi_igual_a_dos

Título: ¿Pi igual a dos?
Sección: Miscelánea
Bloque: Álgebra
Unidad: Números y operaciones
Nivel/Edad: Bachillerato/ 16 años o más
Idioma: Castellano
Autor: Luis Barrios Calmaestra

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:

Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en Miscelánea

Este artículo forma parte de una serie planificada por Red Educativa Digital Descartes al comienzo de un nuevo curso escolar en España y dirigido principalmente a los profesores de Bachillerato. Sin duda también será de utilidad si el proceso de enseñanza y aprendizaje va a ir dirigido a alumnos de un nivel educativo asimilado para edades comprendidas entre los 15 y 18 años de otros países.

Red Educativa Digital Descartes (RED Descartes), asociación no gubernamental sin ánimo de lucro constituida el 1 de junio de 2013 que tiene como fin promover la renovación y cambio metodológico en los procesos de aprendizaje y enseñanza de las Matemáticas, y también en otras áreas de conocimiento, utilizando los recursos digitales interactivos generados en el Proyecto Descartes. En particular, para la consecución de este fin, se promueve el desarrollo y difusión de la herramienta de autor denominada "Descartes".
Descartes y el Proyecto Descartes inició su andadura en junio del año 1998 en un contexto matemático, pero ha ido evolucionando y ampliando su ámbito de aplicación a otras áreas científicas, sociales y literarias.

El repositorio que acumula hoy en día es impresionante y se organiza en subproyectos donde se incluyen todos los materiales interactivos en HTML5 adaptados y desarrollados con DescartesJS que pueden utilizarse en cualquier ordenador o dispositivo móvil independientemente del sistema operativo que porten. Nuestra tarea como asociación se centra en esta sección y aquí podría el docente dirigirse para revisar su contenido y seleccionar para cada momento de su programación los materiales más adecuados para su uso en el aula, bien directamente o previa adaptación, o en su caso la adecuada recomendación de uso a sus alumnos. Estos materiales pueden ser utilizados en línea o en local pues todos ellos pueden ser descargados e instalados en el equipo informático de que se disponga y ¡totalmente gratis!

Cada subproyecto fue diseñado con un determinado propósito, tiene su cabida en un determinado área del conocimiento y adecuado a un determinado nivel educativo.

A continuación hacemos  una reseña de aquellos subproyectos que contiene materiales didácticos para el nivel de Bachillerato, o en otro caso revisado y filtrado convenientemente por el profesor,  indicando las novedades de los recursos  que se han incorporado a nuestro repositorio desde  la publicación del artículo similar, al comienzo del curso escolar y académico  2023-2024, anterior hasta este momento.

 
Subproyecto: Unidades Didácticas
 

 Proyecto UUUU

Las unidades didácticas son bloques de programación docente, base del desarrollo del proceso de enseñanza y aprendizaje y que integran una metodología y una planificación temporal para la consecución de los objetivos contemplados. Las unidades didácticas son un nivel docente de concreción del currículo que refleja el qué, cómo y cuándo enseñar y evaluar.

La estructura de una unidad didáctica incluye una introducción, los objetivos y un índice de contenidos.

Los siguientes enlaces conducen al índice por niveles

Matemáticas

Primer Curso
https://proyectodescartes.org/uudd/nivel_bach_primero.htm

Segundo Curso
https://proyectodescartes.org/uudd/nivel_bach_segundo.htm

Física y Química

Primer Curso
https://proyectodescartes.org/uudd/nivel_bach_primero_fyq.htm

Segundo Curso
https://proyectodescartes.org/uudd/nivel_bach_segundo_fyq.htm

   
Subproyecto: Miscelánea
   

 Proyecto Miscelánea

Recoge escenas aisladas que tratan aspectos muy variados del currículo de Matemáticas y que pueden servir para que el profesorado las utilice directamente para ilustrar conceptos y técnicas básicas, o para que construyan con ellas actividades y propuestas de trabajo en el aula.

El profesorado podrá disponer de escenas para crear sus propias lecciones, creando actividades para que el alumnado investigue, deduzca y llegue a conclusiones por sí mismo.

 

Matemáticas

 

Primer Curso

https://proyectodescartes.org/miscelanea/nivel_bach_primero.htm

Segundo Curso

https://proyectodescartes.org/miscelanea/nivel_bach_segundo.htm

NovedadSUDOKU DescartesJS

NovedadCamuflar monedas

   
Subproyecto: iCartesiLibri (Libros intractivos)
   


Proyecto Miscelánea

Nuestro diseño hace que estos libros sean accesibles y plenamente operativos en cualquier ordenador personal o en cualquier dispositivo móvil tipo tableta y smartphone, independientemente del sistema operativo que porte.

El interes de estos libros digitales radica en que incorporan recursos multimedia con los que el usuario puede interactuar cuando le interese complementar la lectura del texto con un vídeo, una grabación en audio o un material interactivo, básicamnete escenas realizadas con DescartesJS. Los hipervínculos también le pueden conducir a la consulta de recursos como defininiciones, imágenes y artículos publicados en la web y que se relaciona con algun contenido del libro lo que supone un refuerzo y apoyo para una mejor comprensión.


La temática del subproyecto iCartesiLibris es muy variada y está en constante ampliación dado que cualquier profesor  puede redactar y publicar su propio libro digital interactivo disponiendo para ello del libro titulado “Diseño de libros intractivos” ISBN 978-84-18834-27-1 que puede ser descargado en formato ZIP y consultado accediendo al apartado de Formación del Índice Materiales del subproyecto.

 

 Curso de Libros Interactivos 2da Edición    

Esta edición, incorpora nuevas funcionalidades y más contenido, que facilita el diseño y publicación de libros de diferentes áreas del conocimiento con el ingrediente principal que es "la interactividad".

Icono ZIP Icono ZIP

Los temas que el profesor interesado puede consultar en iCartesiLibri son, como hemos dicho anteriormente,  muy variados y con ello está abierto a otros nuevos.

   
Proyecto Prometeo - Bachillerato UNAM
   

El proyecto Prometeo está promovido por el Departamento de Educación del Instituto de Matemáticas de la UNAM (Universidad Nacional Autónoma de México) e incluye las unidades didácticas interactivas creadas por el Equipo Descartes.

Las unidades consisten en una o varias escenas interactivas diseñadas para abordar temas principalmente de matemáticas y física, aunque también hay de otras materias. Los contenidos se desarrollan y cubren diferentes niveles educativos.

Los diferentes materiales del proyecto Prometeo se organizan según el nivel educativo al que va dirigido y también su temática. En la web de RED Descartes hemos incluido los siguientes. Dado que no existe una equivalencia unívoca entre los niveles de los sistemas educativos Mexicano y Español el profesor en busca de  recursos según convenencia debería consultar

 
  • UnADM μate: Unidades didácticas interactivas para su funcionamiento en teléfonos móviles. Aquí se puede encontrar unidades de interés para el bachillerato.
  • Campos Vectoriales y Ecuaciones de Maxwell: Las unidades abordan los campos vectoriales, el cálculo vectorial y su aplicación en las ecuaciones del electromagnetismo de Maxwell.
  • Bachillerato UNAM:
     Bachillerato UAM

    Recursos educativos interactivos de matemáticas para el bachillerato. Su objetivo es abarcar mediante recursos interactivos los diversos contenidos del área de matemáticas que se contemplan en el Bachillerato de México, o preparatoria para el acceso a la universidad de México, que se encuadra dentro de su sistema educativo con la Educación media superior.

     Comprende tres cursos, de primer a tercer grado. Estos cursos se corresponden en el sistema educativo español con 4º de educación secundaria obligatoria (ESO) y 1º y 2º de Bachillerato (aproximadamente de 15 a 18 años).
  • Pensamiento matemático: Unidades Didácticas Interactivas de Introducción al Pensamiento Matemático. La secuencia didáctica utilizada se encuentra conformada por: 1. Planteamiento del problema; 2. Exploración; 3. Formalización; 4. Resolución; 5. Reflexiones, generalizaciones y aplicaciones; y 6. Evaluación.
  • Taller de matemáticas: Se tratan temas fundamentales de aritmética, álgebra, trigonometría, geometría y geometría analítica. Están destinadas a un curso 'Taller de Matemáticas' de la Universidad Autónoma de México (UAM) Cuajimalpa, pero pueden ser de interés como complemento al temario de matemáticas de Bachillerato del plan de estudios español.

La secuencia didáctica utilizada se encuentra conformada por: 1. Introducción; 2. Desarrollo; 3. Ejercicios; y 4. Evaluación. En la evaluación se presentan 5 preguntas de opción múltiple.

   
Proyecto Newton - Problemas
   

Problemas

Esta página recoge enunciados de problemas que tratan aspectos muy diversos de Física y Química y que pueden servir para que el profesorado los utilice directamente para ilustrar los conceptos o para construir con ellos actividades y propuestas de trabajo en el aula. El profesorado podrá disponer de materiales para que el alumnado investigue, deduzca y llegue a conclusiones por sí mismo. 

.

Es más, el profesorado podrá adaptar estos problemas a sus necesidades (si así lo desea) usando la herramienta de autor Descartes.

Esta web recoge escenas aisladas que tratan aspectos muy variados del currículo de Física y Química en forma de resolución de un problema. Esta página pretende ser una zona de la Red Descartes donde el alumno pueda desmenuzar con la ayuda de las TIC los problemas que con mayor carga conceptual se incorporan en el currículo de Física y Química

Los recursos de este subproyectos se centan en los niveles de 4º curso  Secundaria Obligatoria y 1º y 2º cursos de Bachillerato, del plan educativo español. La estructura didáctica sigue el esquema siguiente

  • Título 
  • Guía del alumno 
  • Escena interactiva
  • Evaluación
  • Problema resuelto


Secundaria Obligatoria (ESO)

Bachillerato
   
Proyecto Un_100
   

Problemas

El proyecto Un_100 recoge 101 unidades didácticas o recursos educativos de las áreas de Matemáticas y Física y son para el nivel de Licenciatura, algunos también pueden ser usados en el bachillerato. En su elaboración han participado académicos de México, España, Colombia y Chile. Casi todos pueden ser visualizados en tabletas y smartphones, además de en ordenadores con cualquier sistema operativo, y para ello basta contar con un navegador de internet actualizado a los estándares de HTML5.

 

Todas las unidades tienen un mismo esquema o plantilla común, con un diseño gráfico genérico, y sobre él cada desarrollador ha incorporado los contenidos y ha elaborado su secuencia didáctica personal. Se distinguen cuatro fases o momentos: Motivación, Inicio, Desarrollo y Cierre, y se complementa con un acceso a la documentación de la unidad en la que además se incluyen los créditos.

El siguiente índice es una clasificación por áreas de contenidos y aunque algunos estén indicados para un nivel de Licenciatura podrían ser incluidos en parte o en su totalidad en un nivel de Bachillerato según el plan educativo español.

   
Proyecto Ingeniería y Tecnología
   

Problemas

El proyecto Ingeniería y Tecnología tiene como objetivo ofrecer contenidos digitales que se encuadran en diferentes áreas de conocimiento y que en la mayoría de los currículos de programas de ingeniería o formación tecnológica se agrupan en cuatro apartados principales: ciencias básicas, ciencias de ingeniería, ciencias sociales y humanas, y aspectos o contenidos específicos de la profesión.
Así pues, aquí se abordan temas enmarcados en esos contextos y se dirigirán a diferentes disciplinas.

El apartado de Ciencias básicas incluye una relación de materias que pueden ser de utilidad como complemento al planificar estrategias educativas en el desarrollo del temario de Bachillerato del plan de estudios español en las siguientes áreas:

Podrá observarse cierta variedad organizativa, funcional o estética dependiendo del subproyecto de RED Descartes del que procede el objeto educativo enlazado, pero comparten una misma finalidad didáctica y una común estrategia educativa.


Principalmente, los subproyectos fuente de los recursos son: Unidades didácticas, Un_100, Miscelánea, Problemas, iCartesiLibri,

 
Proyecto Plantillas con DescartesJS
 

 plantillas.png

Con este proyecto es posible generar atractivos juegos, puzles, actividades y test de memoria, de arrastre y asociación, sin más que realizar simples y usuales tareas de edición de imágenes y de ficheros de texto “plano” (es decir sin incluir formato codificado). Para ello se usan escenas, previamente desarrolladas, como cajas negras que recibiendo como entrada un conjunto de datos preparados por el profesor o profesora aportan una actividad interactiva que pueden utilizarse e incorporarse en el proceso de enseñanza-aprendizaje.

 

Los materiales que pueden elaborarse tienen encuadre en cualquier nivel educativo y materia, ya que es el contenido en sí el que marca su ubicación. Por ejemplo, un test de asociación puede establecerse entre poliedros regulares y sus denominaciones o bien entre imágenes de animales y sus nombres en castellano o en otro idioma; o en un test de memoria es posible identificar figuras geométricas con igual o análoga forma o bien animales de la misma especie, o palabras sinónimas. En definitiva la creatividad docente es la que mueve la herramienta en la consecución de los logros educativos.

Las actividades que el docente tiene que realizar utilizando plantillas para el desarrollo de estos materiales se encuadran en tres tipos de acciones:

  • Manipulación y transformación de imágenes.
  • Edición de textos sin formato, tipo txt.
  • Preparación de los datos o contenidos necesarios para el recurso.

Sencillas tareas que permitirán la construcción rápida y fácil de recursos didácticos sin necesidad de estudiar ni conocer la herramienta de edición de Descartes. Todo irá acompañado de su correspondiente guía o tutorial para, a partir de la plantilla, abordar y lograr el recurso deseado.

En el índice del subproyecto Plantillas se encuentra el apartado de Tutoriales donde el docente interesado encontrará un Manual completo de plantillas

El apartado de Aplicaciones incluye una serie de unidades organizadas en áreas de conocimiento y niveles educativos desarrolladas por el profesorado y en algunos casos por algunos de sus alumos a partir de las plantillas existentes. Para el nivel bachillerato y el área de matemáticas tenemos los siguientes rescursos

Matemáticas

 

   
  Revista Digital
   

 Revista.png

Desde RED Descartes ofrecemos nuestra Revista Digital, Panhispánica – Educativa - Interactiva, una plataforma cuyo primer número apareció en 2021 con periodicidad semestral y que tiene como principal objetivo difundir cualquier contenido relacionado con el Proyecto Descartes.

Esperamos que la Revista Digital interese al profesor de Bachillerato  y que pudiera compartir con sus alumnos, en algun caso, si lo considera adecuado .

El formato que toma la revista es la de libro digital interactivo. Los artículos tienen una temática muy diversa, aunque siempre relacionada con los objetivos del Proyecto Descartes y su herramienta homónima Descartes, sin excluir a ningún otro recurso, como soporte en el proceso de enseñanza-aprendizaje en cualquiera de sus ámbitos científico, tecnológico, pedagógico, social, lingüístico-literario…


En consecuencia se incluyen artículos sobre el uso de estos recursos, estudios, investigaciones y actualizaciones sobre herramientas interactivas y de inteligencia artificial, fundamentales para la enseñanza actual, de este momento tan interesante que nos toca vivir.

   

No podemos terminar este artículo sin mencionar dos herramientas más para el usuario interesado en utilizar los recursos que hemos presentado anteriormente.

Las opciones de búsqueda de recursos

El primero consiste mostrar los buscadores que la Web de Red Educativa Digital Descartes pone a su disposición para localizar y consular  los recursos. Para ello puede visionar el siguiente vídeo que explica como hacerlo.

Como aprender a programar las escenas interactivas de DescartesJS 

Como dijo Ildefonso Fernández Trujillo (D.E.P.) en el correspondiente articulo de 2022.

 ... es de señalar la posibilidad de adaptar fácilmente los contenidos de dichos recursos a las necesidades propias o a las características del aula, especialmente las Misceláneas que con un mínimo de cambios pueden convertirse en  herramientas propias que satisfagan las necesidades didácticas inmediatas. Todo lo que necesitamos para realizar los cambios en los recursos es el 'Editor Descartes' herramienta (editor) intuitiva y de uso fácil.

Una vez que se ha visto la estructura de un recurso y se ha hecho uso de él se intuye la facilidad para la creación de uno parecido para lo cual disponemos de varios libros interactivos en el subproyecto iCartesiLibri, 'Formación en DescartesJS', que detallan todas las funcionalidades y procedimientos del editor Descartes y también está disponible una documentación exhaustiva en línea.  

Problemas

Esperamos y deseamos que este artículo le haya sido de ayuda y pueda encontrar en Red Educativa Digital Descartes todo que necesite.

 

 

Publicado en Difusión

En este artículo presentamos una serie de actividades interactivas de lengua que están diseñadas para mejorar y enriquecer el aprendizaje de nuestros estudiantes. Estas actividades pertenecen al proyecto Plantillas de la Red Descartes, una iniciativa que ha transformado la manera en que enseñamos y aprendemos.

El proyecto Plantillas es una propuesta innovadora que ofrece recursos educativos de alta calidad a los docentes. Estas plantillas no solo son fáciles de usar, sino que también son altamente personalizables, permitiendo al profesorado adaptar el contenido a las necesidades específicas de su alumnado.

La Red Descartes ha creado un conjunto de tutoriales detallados que guían paso a paso en el proceso de modificación de estas plantillas. Esto asegura que cada docente pueda ajustar las actividades interactivas a su propio estilo de enseñanza y al nivel de su clase. Con estos tutoriales, incluso aquellos que no tienen mucha experiencia en tecnología pueden sentirse seguros y capacitados para crear recursos educativos atractivos y efectivos.

En el siguiente vídeo se presenta este proyecto y se muestra una pequeña selección de actividades de lengua creadas a partir de diferentes plantillas.

Las actividades de lengua cubren una amplia variedad de temas y competencias, desde la comprensión lectora hasta la gramática y la ortografía. Cada actividad está diseñada para ser interactiva y motivadora, ayudando a los estudiantes a aprender de manera lúdica y dinámica. Los recursos están disponibles en línea y pueden ser utilizados en diversos dispositivos.

Publicado en Vídeos

 

Deltoides

Título: Deltoides con proporciones áureas
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Secundaria, Bachillerato y Universidad (12 años o más)
Idioma: Castellano
Autor: Luis Barrios Calmaestra
ISBN: 978-84-18834-99-8

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

Geometría plana

Título: Geometría Plana. Fundamentos para Secundaria & Media
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Secundaria y Bachillerato (14 años o más)
Idioma: Castellano
Autora: Carlos Alberto Rojas Hincapié
ISBN: 978-84-18834-94-3

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

Unidades Didácticas es un proyecto de la RED Descartes que incluye un conjunto de unidades didácticas de Matemáticas y Física y Química elaboradas por profesores y profesoras a partir de su conocimiento y experiencia en el aula.

Cada una de estas unidades didácticas se refiere a una unidad temática o un conjunto de conceptos y habilidades como parte de un curso o plan de estudio, siguiendo los niveles y cursos del sistema educativo español. Estas unidades son independientes unas de otras, de esta forma el profesorado las puede seleccionar, reorganizar y adaptar a las necesidades de su alumnado.

Con la inclusión de escenas interactivas de Descartes se incentiva la reflexión, la conexión con conocimientos previos, la resolución de problemas y la aplicación práctica del conocimiento. Esto ayuda a los estudiantes a construir un entendimiento profundo que les permita aplicar lo aprendido en diferentes contextos, en lugar de simplemente memorizar información superficialmente.

En el siguiente vídeo se presenta este proyecto y se muestra el contenido de algunas de estas unidades.

Publicado en Vídeos

Cuadrados_Magicos

Título: Cuadrados mágicos aditivos y multiplicativos
Sección: iCartesiLibri
Bloque: Álgebra
Unidad: Aritmética
Nivel/Edad: Secundaria, Bachillerato y Universidad (12 años o más)
Idioma: Castellano
Autor: Luis barrios Calmaestra
ISBN: 978-84-18834-87-5

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

 

Publicado en iCartesiLibri

Algebra_Lineal_Interactiva

Título: Álgebra Lineal Interactiva. Ejercicios y problemas.
Sección: iCartesiLibri
Bloque: Álgebra
Unidad: Álgebra lineal
Nivel/Edad: 2º Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autor:Augusto Spela
ISBN: 978-84-18834-86-8

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

 

Publicado en iCartesiLibri

 

Rosetones

Título: Rosetones
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría analítica plana
Nivel/Edad: Secundaria y Universidad (12 años o más)
Idioma: Castellano
Autora: María José Martínez Debén
ISBN: 978-84-18834-85-1

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

La concha discoidal del Nautilus siempre ha sido un objeto admirado por su gran belleza que es fruto y reflejo armónico de la naturaleza. Capta la atención de cualquier persona curiosa o inquieta, incita a conocer los porqués de su forma e invita a  ahondar en ella, más si tiene acceso a ver su interior donde se observan tabiques y cámaras "secretas" que guardan sigilosamente un bello patrón matemático obtenido como consecuencia de la evolución y adaptación al medio del animal que la produce. Un animal denominado "fósil viviente" que lleva haciendo matemáticas desde hace cuatrocientos millones de años, tiempo en el que las posibles ramas evolutivas diferenciadoras no han triunfado por ser menor la perfección alcanzada.

El estudio bidimensional, realizado con anterioridad en otros artículos, de la sección sagital de la concha nautílica permitió determinar su carácter intrínsecamente cordobés (ligado a la proporción cordobesa) y también la obtención del modelo matemático ontogénico de la misma, encontrando respuestas al comportamiento diferenciado del primer verticilo respecto a los dos siguientes. Pero la concha del Nautilus es tridimensional y uno queda insatisfecho si no procede a intentar modelar esa tercera dimensión, siendo precisamente ese salto es el que se sintetiza en este trabajo: "El modelo matemático tridimensional uniforme del Nautilus" y quizás en el futuro contemple plasmar el modelo ontogénico tridimensional. La sección frontal de la concha es la base sobre la que se construye el modelo 3D al aplicarle el crecimiento cordobés, y aquí se reflejan las dificultades, inesperadas, con las que me encontré y cómo se salvaron. La forma elíptica se mostró como base teórica conformadora de ese perfil frontal del Nautilus y ello también aconteció en el callo umbilical. Pero no todo son éxitos dado que los septos se muestran reticientes a mostrar cuál es la superficie matemática que los envuelve y describe... ¡El reto continúa!, pero ahora lo que procede es invitarles a acompañarme en la descripción de lo conseguido.


En un trabajo anterior presenté el modelo ontogénico matemático del Nautilus donde quedó compilado el conocimiento adquirido después de un amplio periodo de tiempo investigando la sección sagital de la concha del Nautilus y buscando dar explicación matemática a esa atractiva y bella bitácora cálcarea que atrapa y engancha, a la vez que engaña, pues se muestra con una simplicidad aparente cuando realmente engloba una complejidad y una diversidad de detalles crípticos que se necesitan descodificar y que requieren de amplia observación, de una paciencia infinita y de un oído atento para captar los sigilosos mensajes que emite en quedos susurros y que no pueden pillarte distraído, en Babia. Cubierto amplia y detalladamente ese objetivo bidimensional, el lance siguiente era obvio ¿verdad? La concha es tridimensional y como tal ha de analizarse y tratar de comprender. Pero el salto desde planilandia suele ser, y es, difícil de lograr y las dificultades previas encontradas generan un gran vértigo y un amplio desasosiego, si bien las alegrías y la adrelalina segregada con ellas —cuando se logra vencer la desesperación que genera el que las musas continuamente te ignoren— genera adicción y ocultando los sinsabores previos dan impulso a continuar, persiguiendo aprender, conocer y saber un poquito más, aunque ello sólo lleve a adentrarse en el socrático conocimiento y en la paradójica conclusión de no saber nada.  

 Así pues, aceptado el desafío, era necesario tratar de establecer unos límites iniciales, que podían ser ambiciosos, pero que tenían que ser realistas para "no morir en el intento" y no sucumbir en el camino. En analogía a los pasos dados en el estudio bidimensional procedía inicialmente abordar el modelo uniforme, es decir, áquel en el que se considera que la concha crece gnomónicamente siempre de la misma forma en todas las fases vitales del animal que la genera y, por tanto, ignorando su ontogenia, especialmente en su periodo embrionario—. Alcanzado ese objetivo, ya habría posteriormente tiempo personal o ajeno para adentrarse en el modelo ontogénico—. Y este artículo es la síntesis divulgadora del modelo matemático tridimensional uniforme de la concha del Nautilus que he obtenido. Quedan algunos flecos por hilvanar, o quizás puedan interpretarse como jirones que remendar, pero los hilos están urdidos y la tela ha quedado suficientemente tejida para que pueda mostrarse el paño sobre el que otros patronistas y diseñadores pueden aportar su visión y realización.

Modelo teórico tridimensional del Nautilus

En la siguiente presentación se desglosan los diferentes aspectos que he ido progresivamente abordando para lograr el modelo matemático presentado y a continuación procederé a describir resumidamente los pasos dados, las dificultades encontradas y las decisiones tomadas.


Modelo matemático 3D uniforme del Nautilus. 

Modelado 3D de las conchas

En la literatura relativa al modelado de las conchas hay forzosamente que remontarse a célebres autores como Moseley (1838) y Thompson (1917), casi doscientos años de conocimiento divulgado al respecto, y a los trabajos de hace medio siglo en el contexto de diseño matemático computacional de Raud (1961 y 1966). Este autor nos indica que toda concha puede modelarse en base a cuatro parámetros esenciales: la curva generatriz o sección transversal, la distancia o posición relativa de la curva generatriz respecto al eje de giro, el factor de crecimiento y la traslación en la dirección del eje de giro (sólo para conchas turbinadas, lo cual no acontece en el Nautilus ya que ésta es discoidal). 

Consecuentemente, habiendo determinado previamente que el Nautilus tiene un factor de crecimiento ligado a la espiral cordobesa, lo que era necesario fijar era la sección transversal de la concha y su posición especto al eje de giro, quedando ambos parámetros determinados implícitamente si obtenemos la ecuación de la curva que describe ese perfil tomando como eje de referencia dicho eje de giro.

Un primer paso consistió en la adaptación del modelo de Raud para que una vez fijada la ecuación de la curva generatriz de la concha y el factor de crecimiento se generara automáticamente la superficie de la concha. Ello quedó reflejado en la miscelánea "Modelo 3D de las conchas discoidales" (se recomienda consultar las indicaciones ahí incluidas).

Moddelo 3D de las conchas discoidales

La sección transversal del Nautilus

Para determinar la ecuación de la curva generatriz del Nautilus consideré la sección del Nautilus aportada por Tanabe et al. (1985), pero una vez que trabajé con ella detecté que la imagen incluida en ese artículo debió de sufrir una edición erroneá en el proceso de publicación y se produjo una alteración en sus proporciones ya que esa imagen no cuadraba ni con los datos biométricos aportados por esos mismos autores, ni con el modelo bidimensional ontogénico (Galo, 2023). Ello forzó a la busqueda de otras secciones que aportaran luz y dieran forma adecuada a la necesitada sección, a la vez que sirvieran de  constraste y verificación con el citado modelo 2D. En concreto consideré la sección aportada por esos mismos autores en su artículo Tanabe et al. (1990) y los cortes realizados por Gonzalez-Restrepo (2019) obtenidos a partir de la concha digitalizada del Museo de D'Arcy Thompson. Esta tarea ha quedado condensado en las misceláneas:

  • "Crecimiento en algunas secciones frontales del Nautilus", donde se verifica que la sección frontal de Tanabe (1985) no sigue el crecimiento cordobés y, sin embargo, los datos numéricos aportados por dichos autores sí siguen esa proporción; que la sección de Tanabe (1990) y datos respectivos sí siguen el crecimiento cordobés e igualmente aontece con la imagen de González-Restrepo (2019).
  • "Secciones frontales y modelo ontogénico del Nautilus", donde se constrastan las imágenes de las secciones frontales del Nautilus usadas en la miscelánea anterior con el modelo ontogénico 2D (Galo,2023) comprobando que la de Tanabe (1995) no se corresponde, pero sí las de Tanabe (1995) y González-Restrepo (2019).

Consecuentemente se marcaba como necesario la determinación de un tipo (holotipo) para la sección frontal y eso ha quedado reflejado en la miscelánea "Elección de Tipo para la sección frontal del Nautilus" en la que les aconsejo leer la el documento de instrucciones ya que en él se detalla el estudio realizado y las fuentes consultadas (incluidas también en la bibliografía de este artículo divulgador). El tipo elegido es el reflejado en la siguiente imagen, no obstante por cuestiones meramente personales —por haberlas obtenido González-Restrepo a petición mía y por ser cortes realizados sobre el Nautilus del museo de D'Arcy Thompson— también incluiré en el modelado 3D del Nautilus el citado corte de González-Restrepo (2019).

Tipo del Nautilus. Sección frontal Tanabe (1990). 

Aproximación de la sección frontal y generación del modelo 3D uniforme asociado

Fijado el tipo para la sección frontal, se plantea la necesidad de obtener la ecuación paramétrica de la curva que la modela y para ello opté por aproximar la imagen de esta sección por una curva de Bézier. A partir de esa curva, según lo antes indicado, se genera el modelo 3D uniforme asociado. Pueden verse las imágenes siguientes y también interactuar con el recurso "Nautilus, modelado de la sección frontal con una curva de Bézier y modelo 3D uniforme asociado".

Aproximación de la sección frontal del Nautilus con una curva de Bézier

Modelo 3D asociado a la aproximación de la sección frontal mendiante una curva de Bézier (sin callo umbilical)

Con este recurso, también fue fácil obtener respuesta a la pregunta ¿cuál puede plantearse como el modelo teórico de esa sección frontal? La elipse se mostró como una alternativa evidente y en este punto he de reseñar que esta posibilidad ya la calibramos Ángel Cabezudo Bueno, Ildefonso Fernández Trujillo y yo en los trabajos previos a nuestro artículo "Sobre la forma y crecimiento cordobés del Nautilus Pompilius" (2016). En aquel momento no dispusimos de las fuentes científicas de Tanabe et al. que ahora se han usado aquí y no pudimos constatarlo fehacientemente, pero ahora sí. ¡Gracias Ángel! y ¡gracias Ildefonso! La intuición inicial se ha mostrado cierta en la yocto-yotta realidad en la que Ángel y yo habitamos. Para ti, Ildefonso, que ya habitas en el continuo matemático, todo esto es mera obviedad, pero mediante esta simplicidad matemática sentimos próxima tu satisfacción y compañía.

Modelo teórico de la sección frontal del Nautilus

Modelo teórico de la sección frontal y generación del modelo 3D uniforme asociado

El modelo teórico de la concha ventral surgía de manera natural ligado a la forma elíptica y los salientes dorsales y el callo umbilical se mostraban fieles a ese carácter o impronta. Observad las siguientes imágenes y el recurso interactivo "Nautilus, modelo teórico de la sección frontal, de la sección umbilical y modelo 3D uniforme asociado".

Nota bene: En el primer verticilo puede observarse cierto desajuste entre el modelo teórico y la realidad, pero recordemos que estamos trabajando el modelo uniforme y, en él, obviamos la ontogenia del animal que se manifiesta de manera más evidente justo en ese primer verticilo.

Modelo teórico de la pared ventral y de la dorsal (la pared dorsal es la ventral del verticilo anterior)

 

Modelo teórico de los salientes dorsales y de la concha sin el callo umbilical

 

Modelo teórico del callo umbilical y de la concha con el callo

 

Modelo teórico 3D uniforme sin y con callo umbilical (con perfil ventral elíptico o con arcos elípticos)

La concha embrionaria inicial

En el modelo bidimensional ontogénico (Galo 2023) observamos que el primer septo amplifica el fragmacono embrionario y es el que marca el inicio de la pared ventral. Así pues, el eje que pasa por el punto de inicio de la pared ventral y el polo ventral marca el comienzo del modelo uniforme, en el caso 3D se corresponde con el plano que pasa por esos dos puntos y es perpendicular al plano sagital. Consecuentemente, parte de la cámara septal formada por el primer y segundo septo queda sin modelar y tiene un crecimiento diferenciado (es cuando el primer septo es el que está ampliándose). Para que en el modelo global no quede un vacío irreal he optado por seccionar transversalmente esa parte de la cámara y escalar la sección frontal teórica de la concha ajustándola a cada una de esas secciones (ver imagen siguiente), de esa manera el crecimiento se aborda teniendo siempre el mismo perfil, pero con una escala diferenciada acorde con las secciones que sí se conocen. Es una alternativa personal por la que he optado al no tener información al respecto en las fuentes consultadas y cuya aplicación matemática aporta cierto parecido con el aspecto que puede observarse en fotos de esa concha primigenia. No deja de ser una solución estética de compromiso sobre la que pido sean magnánimos.

La concha embrionaria inicial, una solución de compromiso
Aspectos abiertos

No ha mucho que un entrañable colega y amigo —Josep Maria Navarro Canut— me dijo: "¡Lo que está dando de sí el Nautilus!" y ¡es verdad!, ello está aconteciendo así. Aquí, en particular, y en nuestro contexto vital en general, es evidente que es tan corto nuestro conocer y tan amplio nuestra necesidad de saber que cualquier detalle es un nuevo hito sobre el que investigar y aprender. Así pues, ¿hay algo más que modelar matemáticamente en el Nautilus?, ¿qué opinan? Mi respuesta es afirmativa. Yo trato de escuchar al Nautilus y, la realidad, es que no para de susurrar. Otra cuestión es que yo sepa escuchar e interpretar adecuadamente sus indicaciones, si bien les garantizo que empeño no deja de haber nunca en mí. ¿Qué aspectos quedan abiertos aún, por ahora?, lo que surja después llegará y lo trataremos en su momento. Citemos lo siguiente:

  • Si bien para el modelado 3D se ha considerado la sección transversal de la concha, la abertura de ésta no coincide con la sección, sino que presenta un perfil que no es plano, sino cóncavo-convexo, desde las primeras etapas vitales.
  • En la sección sagital los septos están modelados por espirales cordobesas, ¿pero cuál es la superficie que modela tridimensionalmente a estos? A priori, su modelado se presenta complicado y difícil. Se observa, y parece lógico lo que acontece, que la intersección de los septos con la concha se asemeja al perfil de la abertura, pero ¿cómo es en sí el diseño 3D global de los mismos?  

El perfil cócavo-convexo de la boca del Nautilus y los septos (¡un gran problema abierto!) 

  • Finalmente, el modelo ontogénico 3D que incluiría como puntos pendientes a detallar la concha inicial embrioanaria, las particularidades de los septos en el primer verticilo y la confluencia de la pared dorsal con la concha inicial en la transición del primer verticilo .

Modelo matemático tridimensional uniforme

El modelo tridimensional uniforme al que hemos llegado está reflejado en el siguiente recurso interactivo. A través de los parámetros disponibles puede verse su base constructiva y su representación 3D. En estas indicaciones se hace una descripción del modelo y de cada uno de esos parámetros. ¡Le invitamos a interactuar con él!


Recurso interactivo donde se construye el modelo tridimensional uniforme del Nautilus. Acceso a ventana completa y a las indicaciones.

Finalmente en las siguientes imágenes animadas podemos observar ese modelo matemático de la concha y un detalle del callo umbilical:

El modelo matemático 3D uniforme del Nautilus (Arcos elípticos en la concha y arcos elípticos en el callo umbilical)

Nautikus3DUniformeCalloUmbilical

Detalle del callo umbilical en el modelo matemático 3D uniforme del Nautilus (Arcos elípticos en el callo umbilical)


Espero que les haya parecido interesante y puesto que quedan tareas abiertas no descarto dirigirme a ustedes con nuevos logros si consiguiera alcanzarlos.

¡Hasta pronto! y ¡qué tengan un productivo y feliz año 2024!


Bibliografía 

Galo J.R., Cabezudo A. y Fernández I.(2016) .Sobre la forma y crecimiento cordobés del Nautilus PompiliusEpsilon, 2016, Vol. 33 (3), nº 94.

Galo J.R. (2023). Modelo ontogénico matemático del Nautilus. Blog de la Red Educativa Digital Descartes.

González-Restrepo, F. (2019). Cortes del Nautilus a partir de la digitalización 3D del museo Dundee. Red Descartes Colombia.

Hayasaka, Shozo, Tanabe, Kazushige et al. (1982). Field study on the habitat of Nautilus in the environs of Cebu and Negros Islands, the PhilippinesMem. Kagoshima Univ. Res. Center S. Pac., Vol. 3, No. 1. 1982 p. 67-137.

Moseley Henry, (1838).  On the geometrical forms of turbinated and discoid shellsPhilPhil. Trans. R. Soc.128: 351–370.

Raup, D. M. (1961). The Geometry of Coiling in Gastropods. Proceedings of the National Academy of Sciences of the United States of America, 47(4), 602–609.

Raup, D. M. (1966). Analysis of Shell Coiling: General Problems. Journal of Paleontology, Vol. 40(5), 1178-1190.

Tanabe, Kazushige(1985). Record of Trapping ExperimentIn: Hayasaka, S. (ed.) Marine ecological studies on the habitat of Nautilus pompilius in the environs of Viti Levu, Fiji. Kagoshima University, Research Center for the South Pacific, Occasional Papers, 4, 10-17.

Tanabe, Kazushige(1988). Record of Trapping ExperimentKagoshima University, Research Center for the South Pacific, Occasional Papers, No. 15, p.5-15.

Tanabe, Kazushige & Hayasaka, Shozo & Tsukahara, Junzo. (1985). Morphological analysis of Nautilus pompilius. In: Hayasaka, S. (ed.) Marine ecological studies on the habitat of Nautilus pompilius in the environs of Viti Levu, Fiji. Kagoshima University, Research Center for the South Pacific, Occasional Papers. 4. 38-49.

Tanabe, Kazushige & Tsukahara, Junzo. (1987). Biometric Analysis of Nautilus pompilius from the Philippines and the Fiji IslandsIn book: Nautilus: The Biology and Paleobiology of a Living Fossil. Chapter: 7. Publisher: Plenum Publishing Corporation. Editors: W. Bruce Saunders and Neil H. Landman.

Tanabe, Kazushige & Tsukahara, Jyunzo & Hayasaka, Shozo. (1990). Comparative morphology of living Nautilus (Cephalopoda) from the Philippines, Fiji and PalauMalacologia 31(2):297-312.

Tanabe, Kazushige & Tsukahara, Jyunzo & Shinomiya, Akihiko & Oki, Kimihiko. (1991). Notes on Nautilus Pompilius captured from Port Moresby area, Papua New GuineaKagoshima Univ. Res. Center S. Pac., Occasional Papers, No. 21. p. 33-38.

Tanabe, Kazushige & Tsukahara, Junzo. (1995). Morphological Analysis of Living Nautilus from PalauKagoshima Univ. Res. Center S. Pac., Occasional Papers, No. 27. p. 41-55.

Thompson, D’A. W., (1917). On growth and Form. Cam. Univ. Press


Realizado en el año 2023, vigésimo quinto aniversario del Proyecto Descartes


 
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión
Página 1 de 29

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales de Matemáticas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information