Un_100

U
nidades Didácticas
Interactivas para la Universidad

 

Para visualizar estas unidades interactivas es necesario usar un navegador de última generación
que implemente el Canvas de HTML5, como por ejemplo: Google Chrome, Mozila Firefox o Safari

Geometría 3: avanzada

    Descarga
Geometría esférica

Se determina la trayectoria mínima sobre una esfera entre dos de sus puntos, es decir se determina la geod&iecute;sica entre esos dos puntos. Se define qué es un segmento esférico y un triángulo esférico. Se comprueba que la suma de los ángulos de un triángulo esférico es superior a 180º Y se muestra que la geometría esférica no es una geometría ecuclídea, que hay otras geometrías.

Área: Matemáticas, Geometría
Nivel: Licenciatura

El disco de Poincaré

Se plantea el modelo geométrico bidimensional denominado "El disco de Poincaré": interior del círculo, en el que las geodésicas son arcos de circunferencias euclídeas ortogonales a su frontera. Se muestran los objetos básicos en el disco de Poincaré: los segmentos, circunferencias, ángulos y sus particularidades para el observador euclídeo. Se comprueba que la suma de los ángulos de un triángulo en el disco de Poincaré es inferior a 180º Finalmente se muestra que la geometría del disco de Poincaré no es una geometría euclídea, es decir, hay otras geometrías.

Área: Matemáticas, Geometría
Nivel: Licenciatura

Geometrías no euclideas

Se introducen los fundamentos de la Geometría Euclídea. Se enuncian los elementos básicos y los postulados formulados por Euclides, y con base en ellos se demuestra que la suma de los ángulos de un triángulo plano son dos ángulos rectos. Asimismo, se demuestra que hay otros modelos, en que dicha suma es una cantidad superior o inferior a esos dos ángulos rectos. Finalmente, se muestra que hay modelos geométricos en los que no se cumple el postulado quinto de Euclides, que hay geometrías no euclídeas.

Área: Matemáticas, Geometría
Nivel: Licenciatura

m-Volumen en Rn

Se presentan la generalización de la fórmula de Herón y del Teorema de Pitágoras a m vectores en R^(n). Se pretende que el lector se familiarice con estas fómulas y su significado geométrico.

Área: Matemáticas, Análisis, Variedades lineales
Nivel: Doctorado, Licenciatura

Distancias entre subvariedades lineales afines

Se presenta la fórmula para calcular el m-volumen. Una sola fórmula para encontrar las distancias entre puntos, rectas, planos o cualquier par de subvariedades lineales afines de R^m

Área: Matemáticas
Nivel: Licenciatura

El caleidoscopio y la Teoría de Grupos

Se presenta la geometría del caleidoscopio y se exploran las transformaciones (reflexiones, traslaciones, rotaciones y pasos) involucradas en la producción de las imágenes de un caleidoscopio por medio de la reflexión respecto a los tres lados de un triángulo equilátero. Esto se hace con el objeto de llevar al estudiante a descubrir y conocer las transformaciones lineales isométricas del plano y, a través de ellas, el origen de la Teoría de Grupos.

Área: Matemáticas, Álgebra, Geometría
Nivel: Licenciatura