Miércoles, 29 Junio 2016 06:38

Cuadrilateralia

Escrito por
Valora este artículo
(4 votos)

Cuadrilateralia es una aplicación informática de carácter didáctico que pretende aprovechar a tendencia natural de manipular objetos concretos para, a través de la visualización, la observación, la composición y descomposición, el diseño y la construcción virtual, descubrir y estudiar las propiedades de carácter matemático de los cuadriláteros. Sus actividades han sido programadas teniendo en cuenta los principios de interactividad, brevedad en los textos, aleatoriedad y corrección o evaluación automática.”

Ése es el resumen descriptivo que Javier de la Escosura Caballero y María Antolina Muñoz Huertas hacen del recurso educativo del que son autores y que desarrollaron en el año 2006 usando Descartes. Fueron premiados por el Ministerio de Educación de España con el segundo premio a materiales educativos convocado por el Instituto de Tecnologías Educativas en el año 2006. Es un contínuum del recurso “Geometría dinámica del triángulo” que divulgamos en este blog y que igualmente hemos procedido a adaptarlo a DescartesJS permitiendo así que pueda utilizarse tanto en ordenadores como en tabletas y smartphones.

Los contenidos curriculares de Cuadrilateralia han sido vertebrados en torno a nueve capítulos o ejes temáticos:

    • Definición, clasificación y obtención
    • Ángulos y lados
    • Diagonales y ejes de simetría
    • Áreas
    • Perímetros
    • Cuadraturas
    • El rectángulo áureo
    • Construcción de los paralelogramos
    • Construcción de trapecios y trapezoides

En la guía didáctica, los autores, nos indican que:

“Las actividades guiadas e interactivas tales como: estudiar definiciones, fórmulas y clasificaciones; analizar propiedades de los lados, ángulos y diagonales; deducir las fórmulas del área o la cuadratura de los cuadriláteros utilizando puzles; usar regla y compás para resolver problemas de construcción; calcular áreas y perímetros tomando las medidas necesarias para ello; y encontrar los ejes de simetría o descubrir, doblando papel, cuándo un rectángulo es áureo, etc., favorecen la motivación y la comprensión y solución de los problemas relacionados con el tema.”

Y nos manifiestan que:

“Hemos realizado esta aplicación pensando en los alumnos y en las alumnas. Contando esencialmente con su participación activa. Ellos van a ser los/las protagonistas que con la ayuda del profesor han de tratar de llevar a buen puerto las actividades propuestas.

Ojalá que esta tarea os resulte a todos tan interesante, divertida y apasionante como para nosotros ha sido su elaboración.”

Todo lo expuesto concuerda con lo reflejado en el recurso y ciertamente es un medio eficaz para el aprendizaje activo e interactivo de los cuadriláteros.

¡Os invitamos a comprobarlo!

Lunes, 20 Junio 2016 11:05

Geometría dinámica del triángulo

Escrito por
Valora este artículo
(5 votos)

Este artículo tiene como objetivo el difundir un recurso interactivo desarrollado por Javier de la Escosura Caballero en el año 2002, utilizando Descartes, y que obtuvo tres premios:

    1. Tercer premio a Materiales Educativos del Instituto de Tecnologías Educativas del Ministerio de Educación de España en el 2002
    2. Primer premio en el "First European Contest of Mathematics Teaching Actions" TeachMath Excellence 2002.
    3. Accésit en la "XVIII Convocatoria de Premios de Investigación Pedagógica y Experiencias Didácticas". Geometría dinámica del triángulo: Una experiencia en el área de Matemáticas.

Descartes acaba de alcanzar en este mes de junio de 2016 su mayoría de edad, dieciocho años. Al ir creciendo, progresivamente, ha ido confirmando y asentando su potencial como herramienta de autor multipropósito mediante la que el profesorado y los desarrolladores de recursos educativos pueden plasmar su experiencia de aula, y su creatividad, obteniendo materiales que catalizan el aprendizaje de un alumnado que, gracias a Internet, se ubica en cualquier punto o lugar de nuestro pequeña “Gaia”o “Pachamama”.

Y como ejemplo de ese potencial cartesiano, más bien de esta realidad, hemos adaptado a DescartesJS la unidad “Geometría dinámica del triángulo”. 

Una unidad didáctica que en la permanente voracidad informática y sólo por haberse desarrollado hace catorce años, quizás, alguien podría equivocadamente verse tentado a catalogarla como una antigualla —en esa línea, ¿cómo catalogaría a “Los Elementos de Euclides”?—, pero que mantiene inalterable su objetivo educativo promoviendo un encuadre meramente euclidiano, ubicado en la Geometría sintética. Con la adaptación a DescartesJS se logra que el aprendizaje se pueda alcanzar usando cualquier tipo de dispositivo, es decir, tanto ordenadores como tabletas o smartphones con cualquier sistema operativo. Se mantiene el diseño, los objetivos y contenidos del recurso original, pero se actualiza el soporte que pasa a ser compatible HTML5.

Las “nuevas” tecnologías —¡¿hasta cuándo seguiremos denominándolas nuevas?!— han permitido dinamizar la Geometría y ese es planteamiento que aborda Javier de la Escosura según lo describe en la introducción a esta unidad, donde aboga por potenciar la capacidad visual y constructiva del alumnado, dando igual importancia tanto al concepto como a su plasmación física. Y para ello, conjuga tanto el entorno virtual que le aporta Descartes (en el que se observa y aprende) como la manipulación de los objetos en papel al plantear proyectos de trabajo (aportando plantillas imprimibles que facilitan su realización) en los que el plegado del papel, la construcción de puzles y la utilización de regla y compás es algo intrínseco al aprendizaje.

Los contenidos, que como indica el título se centran en la geometría del triángulo, se desarrollan en cinco bloques:

    1. Ángulos. Mediante plegado se demuestra que la suma de los ángulos de un triángulo en el plano es un ángulo llano y también que un ángulo exterior es la suma de los otros dos interiores no adyacentes.
    2. Construcción. Dibujo con regla y compás de triángulos conocidos sus lados, un ángulo y los lados adyacentes y dos lados y el ángulo comprendido, pudiendo deducir cuando los datos aportados permiten la construcción y consecuentemente el descubrimiento de algunas propiedades del triángulo.
    3. Área. Se abordan tres construcciones que permiten deducir el área de un triángulo en base a la del rectángulo.
    4. Rectas y puntos notables. Análisis de las mediatrices, medianas, bisectrices y alturas.
    5. Triángulos rectángulos. Se aborda la demostración de Teorema de la altura, del cateto y de Pitágoras con puzles.

En esencia un completo aprendizaje del triángulo que se verá complementado con otro recurso, denominado “Cuadrilateralia”, que fue también premiado y que presentaremos en un próximo artículo en este blog. Y más adelante lo ampliaremos con “Poligonalia”.

Viernes, 15 Abril 2016 18:55

TELESECUNDARIA

Escrito por
Valora este artículo
(6 votos)

Este es el nombre del nuevo subproyecto de RED Descartes.

Telesecundaria es una modalidad de los estudios de educación secundaria en el Sistema Educativo de México dirigido a estudiantes adolescentes de 12 a 15 años que viven en comunidades dispersas que carecen de escuela de secundaria.

Se utilizan para ello los avances en tecnologías de la información y comunicación (TIC) como recurso para acercar esta formación a los jóvenes y puedan concluir su educación básica.

En este subproyecto de RED Descartes se han recogido objetos de la Telesecundaria desarrollando los correspondientes materiales con la herramienta Descartes. Las asociaciones de Colombia y España han sido las encargadas de preparar la adaptación a DescartesJS y en consecuencia todos podrán ser consultados en cualquier dispositivo con sistema operativo que admita un navegador compatible con HTML5.

Los materiales, que se irán integrando en el subproyecto corresponde a los tres cursos o grados en que se divide la Secundaria en el Sistema Educativo de México, trata los contenidos de Matemáticas, Física y Química.

En el momento en que se redacta este artículo se pueden consultar ya los 24 recursos del segundo grado de Física (13-14 años). En un corto espacio de tiempo iremos viendo aparecer publicados los restantes hasta un total de 123, con la siguiente distribución:

  • 28 de Matemáticas 1º
  • 38 de Matemáticas 2º
  • 29 de Matemáticas 3º
  • 24 de Física 2º
  • 4 de Química 3º

Destaca la alta calidad de estos materiales y son perfectamente válidos para ser utilizados complementariamente a los contenidos curriculares de nuestro sistema educativo tanto por alumnos como por profesores. 

Enhorabuena y muchas gracias por el esfuerzo y el mérito de quienes han estado vinculados a esta producción.

 

Miércoles, 06 Abril 2016 18:14

El grillo y la espiral logarítmica

Escrito por
Valora este artículo
(41 votos)

Un grillo está sobre una superficie, que gira a una velocidad angular constante, y se está desplazando dando saltos siguiendo una línea recta que pasa por el centro de giro. Ha dado un salto inicial y posteriormente cada salto es c veces mayor que el anterior. ¿En qué posición está en cada instante? ¿Cuál es la trayectoria que sigue?

El grillo y la espiral logarítmica

 

Este planteamiento dinámico conduce a una curva, ampliamente estudiada, la cual es el objeto de este artículo de difusión. En la miscelánea que hemos publicado en nuestro servidor de contenidos puedes ver el camino que sigue nuestro grillo saltarín, pudiendo seleccionar el salto y la velocidad de giro que desees y observando en qué influye tu elección.


Es bien conocido que la circunferencia es una curva equiangular, es decir, que en cualquier punto de la misma, el ángulo que forma el radio con la tangente es siempre constante e igual a un ángulo recto.

La circunferencia es equiangular

 

Inicialmente René Descartes (1596-1650) fue quien se planteó la determinación de una curva que también fuera equiangular, pero que el ángulo fuera el que previamente se deseara, es decir, una generalización de lo que acontece en la circunferencia. Jakob Bernoulli (1654-1705) también la analizó y la denominó “Spira mirabilis” o espiral maravillosa, y de acuerdo con sus propiedades, en su epitafio hizo poner “Eadem mutata resurgo”, es decir, “Mutante y permanente vuelvo a resurgir siendo el mismo”. En este recurso podrás comprobar el significado de esta expresión y experimentar que:

¡Ciertamente es maravillosa!

Para ello, planteamos un camino en varias fases, un total de doce, y en cada una de ellas se avanza en el análisis de esta espiral, en sus propiedades. Pulsa sobre la imagen siguiente para acceder al recurso.

Acceso a la espiral maravillosa

 

En las tres primeras fases se aborda su construcción dinámica dependiente del tiempo— y se inicia su análisis con la obtención de la relación —digamos estática o atemporal entre la distancia y el ángulo polar. Ésta, es la ecuación algebraica en coordenadas polares de la espiral y nos permite identificar el significado físico de los parámetros específicos de la misma.

Ecuación de la espiral logarítmica

La expresión justifica su denominación como espiral logarítmica, pues se observa que el ángulo polar se puede expresar en función del logaritmo del radio polar. Y en la fase cuarta del recurso se observa y justifica que a es un factor de escala, que para b=1 obtenemos como caso particular la circunferencia y que las espirales de base b y 1/b son simétricas respecto del eje polar.

Una quinta fase permite ver y justificar por qué también se le denomina espiral geométrica ya que los puntos de ella situados sobre una misma semirrecta siguen la relación de una proporción geométrica (aquí se aplica una analogía con la que acontece en la espiral de Arquimedes o espiral aritmética). Y en la sexta se visualiza y demuestra el carácter equiangular que motivó a Descartes.


El hecho de ser equiangular es lo que le confiere a esta espiral su carácter tan especial. Y en base a ello, las últimas fases del recurso se centran en mostrar y demostrar el carácter maravilloso que marcó Bernoulli y que sintetizó en la citada expresión: “Eadem mutata resurgo”. Para una circunferencia es fácil de intuir y ver que su forma es tal que siempre surge o resurge siendo la misma, crece y crece siempre siendo la misma. Y lo maravilloso es que este surgir y resurgir siendo la misma se verifica también en esta “circunferencia generalizada” o espiral logarítmica, es decir, la razón de su crecimiento instantáneo es la unidad. Sintetizando el planteamiento que se realiza en el recurso, pues el detalle lo puedes comprobar interactuando con él, tenemos que:

  • Inicialmente el análisis del crecimiento se aproxima mediante rectángulos semejantes circunscritos a la espiral, que siguen un patrón de crecimiento gnomónico en el sentido euclídeo (según lo definido en “Los elementos de Euclides”), que puede interpretarse como el patrón de crecimiento en pasos discretos de π radianes.
  • Posteriormente se aborda el crecimiento, pero en el sentido establecido por Aristóteles cuando decía: «Hay ciertas cosas que no sufren alteración salvo en magnitud, cuando crecen...».

Gnomon según Aristóteles

Y aquí, esto se aborda planteando el crecimiento con polígonos semejantes construidos sobre radios vectores, correspondientes a puntos de la espiral, que difieren:

    • En π/2 radianes, lo que conduce a una razón de semejanza b^(π/2): 

Crecimiento gnomónico discreto pi/2

    • O, en general, con paso 2π/n y razón de semejanza b^(2π/n):

Crecimiento gnomónico discreto

 Como ejemplo, sobre la concha del Nautilus pompilius, se muestra un crecimiento gnomónico discreto de paso 2π/16 en una espiral logarítmica cordobesa (b=1.186):

Crecimiento gnomónico en el Nautilus pompilius

 

  • Finalmente cuando el crecimiento es instantáneo, es decir, si n->infinito y el paso entre radios vectores es por tanto 2π/n->0, la razón de semejanza b^(2π/n) tiende a la unidad: “Eadem mutata resurgo”.

Crecimiento gnomónico instantáneo

 

¡Te deseamos un buen aprendizaje siguiendo a nuestro grillo!

Página 10 de 44
SiteLock

Módulo de Búsqueda

Frase Clave

Título del artículo

Categoría

Etiqueta

Publicador

Ayuda

Acceso

Lo más leído de lo publicado hace un mes

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information