Valora este artículo
(16 votos)

"En la actualidad, las mujeres y niñas encuentran barreras de muchos tipos, a veces muy sutiles, que dificultan su presencia en la ciencia. Esta desigualdad es patente en la elección de los estudios por parte de las niñas y se va agudizando al avanzar en las carreras científicas y tecnológicas. Con el objetivo de lograr el acceso y la participación plena y equitativa en la ciencia para las mujeres y las niñas, la igualdad de género y el empoderamiento de las mujeres y las niñas, el 15 de diciembre de 2015, la Asamblea General de las Naciones Unidas proclamó el 11 de febrero de cada año como el Día Internacional de la Mujer y la Niña en la Ciencia".

El párrafo ha sido extraído literalmente del sitio web 11 de febrero, donde puedes encontrar toda la información relativa a esta importante fecha, a la que RED Descartes se suma animando a celebrar dicha efemérides, programando y realizando actividades en las aulas y aportando los recursos y experiencias disponibles en nuestros dominios.

Día Internacional de la Mujer y la Niña en la Ciencia

 

Desde RED Descartes se difunde la enorme labor desarrollada, a lo largo de la historia, por la mujer en la ciencia, y muy especialmente en las ciencias matemáticas, físicas y químicas. Además, promovemos en nuestras aulas y divulgamos la ciencia que realizan nuestras alumnas desde los diversos proyectos que abordamos y que compartimos en este artículo para apoyar los objetivos del 11 de febrero.

 LA MUJER EN LA CIENCIA

"El personaje misterioso" es un programa de Radio Descartes conducido por Eva Perdiguero y Ángel Cabezudo con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Concretamente, tras la entrevista del invitado, que no se desvela, el escuchante debería conocer su nombre o bien tomar los datos que se aportan en la dramatización y tomarse un tiempo para averiguarlo consultando en la múltiple documentación que hoy día se encuentra disponible, principalmente en Internet o en libros divulgativos de Historia de las Matemáticas o de Matemáticos célebres, pasando a responder en un comentario del blog de nuestro portal. Pues bien, de este proyecto hemos seleccionado las siguientes entrevistas a mujeres matemáticas de la historia, cuyas voces son interpretadas por mujeres científicas del ámbito educativo. Así, aportamos los siguientes recursos:

Para descubrir al personaje misterioso, se publica un puzle creado con Descartes JS que incluye imágenes alusivas, alegóricas o de efemérides que descubren al personaje:

 CONTRIBUCIONES DE ALUMNAS A LA CIENCIA

Son varios los proyectos difundidos desde el portal de RED Descartes donde las alumnas son protagonistas y divulgadoras de la ciencia, especialmente de la matemática. Así, del proyecto para el "desarrollo de la comunicación audiovisual a través de las matemáticas con Descartes", hemos seleccionado con motivo del día 11 de febrero las siguientes contribuciones y aportaciones de alumnas a la ciencia:

"La radio ficción en el aula de matemáticas" es otro de los proyectos difundidos en el portal de RED Descartes, del que hemos seleccionado las siguientes contribuciones de alumnas a la ciencia:

Finalmente, del proyecto "El alumnado como generador de contenido multimedia con Descartes JS" hemos realizado la siguiente selección de producciones en las que participan alumnas:

 JUEGO DIDÁCTICO SOBRE MUJERES CIENTÍFICAS

El juego es una de las estrategias didácticas de gran valor que motiva a nuestro alumnado y que se potencia con las tecnologías de la información y la comunicación. Así que os dejamos el que ha creado nuestro compañero Jesús M. Muñoz Calle, del proyecto Aplicación de Juegos Didácticos en el Aula, para difundir algunos de los decubrimientos y avances científicos gracias a la mujer, con algunas capturas de pantalla por si fueran necesarias.

Mujeres científicas 

Tutorial para acceder al juego

Tutorial para acceder al juego

Valora este artículo
(6 votos)

 

La ong "Red Educativa Digital Descartes" (RED Descartes) acaba publicar el tercer volumen de su publicación periódica 

Recursos educativos interactivos de RED Descartes

ISSN: 2444-9180 Dep. Legal: CO-2079-2015 

Este volumen consta de dos números y recogen todos los materiales que se han desarrollado o actualizado a lo largo del año 2017. Los contenidos de cada número son los siguientes:

  • Vol. III-Núm. 1:
    • Misceláneas.
    • iCartesiLibri.
    • ED@D Matemáticas LOMCE.
    • AprendeMX.
    • Competencias.
    • Unidades didácticas.
    • Plantillas. 
  • Vol. III-Núm. 2:
    • Aplicaciones de juegos didácticos en el aula.

 

Estos DVD pueden descargarse desde nuestro espacio web.  

 

dvd

 

 

Todas y todos los socios de RED Descartes están de enhorabuena por la publicación de este nuevo volumen, el cual ayudará a la difusión del trabajo altruista que realizan en pro de la Educación en la aldea global, gracias a las TIC. 

 

Sábado, 03 Febrero 2018 00:00

EDAD 2ºESO Ecuaciones

Escrito por
Valora este artículo
(4 votos)

Este mes vamos a ver una unidad de 2ºESO sobre ecuaciones:

En el vídeo hemos tratado lo siguientes puntos:

1.Ecuaciones, ideas básicas
   Igualdades y ecuaciones
   Elementos de una ecuación
   Ecuaciones equivalentes

2.Ecuaciones de primer grado
   Sin denominadores
   Con denominadores
   Resolución general de ecuaciones

3.Ecuaciones de segundo grado
   Definición. Tipos
   Resolución de ax²+bx=0
   Resolución de ax²+c=0
   Resolución de ax²+bx+c=0

4.Aplicaciones
   Problemas con ecuaciones

 

Valora este artículo
(4 votos)
El Proyecto AJDA dispone de más de 500 juegos didácticos y de gran cantidad de recursos relacionados con ellos. En esta entrada se presenta la guía rápida para utilizar dichos juegos didácticos. Su objetivo es indicar en unos pocos pasos, como acceder y usar los juegos didácticos, de forma que cualquier usuario que acceda a la web del proyecto pueda empezar a jugar desde el primer momento. Primero se presenta en forma de video-tutorial y después paso a paso mediante capturas de pantalla.

 

1. Buscar y elegir el juego que se desee.

 

Elige un juego del menú "Selecciona un juego", situado en la esquina superior izquierda de la web del proyecto. Al pulsar se mostrará una descripción del juego. (También se puede usar los buscadores de la web, especialmente el de juegos).

 

2. Acceder al juego elegido.

 

Para entrar en el juego pulsa el botón rojo, "ACCEDER AL JUEGO" que aparece en la descripción del mismo.

 

3. Seleccionar la modalidad de introducción de preguntas el juego.


Éstas pueden introducirse de forma escrita, oral o no contener preguntas. (Si el juego sólo presenta una modalidad este paso se omite).

 

 

4. Elegir la configuración o parámetros iniciales del juego.


Introduce los nombres de los jugadores, opciones específicas y generales del juego, carga de ficheros de preguntas para juegos con esta modalidad, etc.

 

 

5. Pulsar en el botón JUGAR.

 

 

6. Comenzar la partida.

 

 

Valora este artículo
(7 votos)

Esta semana vamos a ver algunas unidades del Proyecto Canals con actividades de introducción al cálculo. Pertenecen al Proyecto Canals una serie de materiales interactivos que han sido diseñados a partir de los materiales que ha ido elaborando y compilando la professora Maria Antònia Canals durante su extenso periodo docente.

En el siguiente vídeo y a modo de ejemplo se han seleccionado tres actividades de sumas y restas y se muestran también los pasos a seguir para insertar dichas actividades en un curso de Moodle.

Las actividades seleccionadas son:

Miércoles, 24 Enero 2018 10:30

Vol. III

Escrito por
Valora este artículo
(12 votos)

 

Materiales publicados en DVD.

ISSN: 2444-9180 Dep. Legal: CO-2079-2015

     
 Vol. III, enero de 2018    
Vol.III DVD1           portada Vol.II DVD1
 Vol. III - Núm. 1 (3,62 GB)   Vol. III - Núm. 2 (3,63 GB)

Incluye todos los materiales desarrollados o actualizados durante 2017 organizados por subproyectos.

  Incluye los materiales actualizados del subproyecto "Aplicaciones de juegos didácticos en el aula".
     
Portada y contraportada Galletas de los DVD
 

  


 Nota: La imagen que ha servido de base para la portada y galleta de los DVDs ha sido tomada desde commons.wikimedia.org


 

Sábado, 06 Enero 2018 00:00

EDAD 4º ESO Aplicadas - Polinomios

Escrito por
Valora este artículo
(3 votos)

Este mes vamos a ver un vídeo de Matemáticas Aplicadas de 4ªESO sobre Polinomios:

Hemos tratado los siguientes epígrafes:

1. Expresiones algebraicas
   De enunciados a expresiones
   Valor numérico
   Expresión en coeficientes

2. División de Polinomios
   División
   División con coeficientes
   Regla de Ruffini
   Teorema del resto

3. Descomposición factorial
   Factor xn
   Polinomios de 2º grado
   Regla de Ruffini reiterada
   Identidades notables

Martes, 09 Enero 2018 15:32

Calculadora para la Normal

Escrito por
Valora este artículo
(21 votos)

En este artículo se pone de manifiesto la conveniencia y utilidad de contar con una herramienta, la calculadora de la Normal, que nos permita dar respuesta de manera cómoda y rápida a múltiples y rutinarios problemas de probabilidad que surgen en estudios con poblaciones que se ajustan a cualquier distribución normal. Se evita el paso de tipificación a la N(0, 1) y se mejora la precisión usual obtenida.

Calculadora de la distribución Normal


 

LA DISTRIBUCIÓN NORMAL

Pensemos en voz alta:

  • ¿Me gustan los problemas de probabilidad?
  • ¿Es difícil plantear y resolver situaciones en las que se requiere contar y recontar casos utilizando técnicas de combinatoria?
  • ¿Se parecen mucho algunos problemas de probabilidad a otros?
  • ¿Puede pensarse que resolver muchos problemas de probabilidad consiste en realidad en medir de forma aproximada áreas de un aspecto muy determinado?

probabilidad versus área

  • Cuando resuelvo un problema de probabilidad siempre tiendo a "dudar" de mi respuesta… y es que siempre he tenido mala "pata" con eso de la suerte.

La estructuración, orden, entendimiento y control en ese escurridizo e inestable mundo, parece llegar en el momento que las Matemáticas clásicas intervienen en el azar con toda su “potencia de fuego” y cuando también, por qué no, se adentran en él con todo su rigor. La introducción del concepto de variable aleatoria —que no es más que el de función— y su ubicación en este contexto con un carácter protagonista supone un primer paso básico y fundamental que conviene tener presente.

Variable aleatoria, funciones de probabilidad y de distribución

El concepto de variable aleatoria como función numérica y su aplicación en la Estadística y la Probabilidad supone un extraordinario avance en estas dos disciplinas. Muchos problemas y situaciones prácticas procedentes de experimentos aparentemente muy diferentes se pueden modelar en un mismo marco teórico mediante variables aleatorias con sus respectivas funciones de probabilidad y de distribución.

  • En los casos en que la variable aleatoria sea discreta ―valores aislados―, existen modelos teóricos como la distribución Binomial, la distribución Hipergeométrica, la distribución Geométrica, la Binomial Negativa , la Multinomial,… que permiten la adaptación y estudio de muchos problemas relacionados con experimentos aleatorios procedentes de situaciones muy distintas.
  • En los casos en los que la variable aleatoria sea continua ―que pueda tomar, al menos teóricamente, cualquier valor de un intervalo―, sin duda es el modelo de la distribución Normal el que se adapta a un mayor número de situaciones. Caracteres morfológicos como peso, estatura, diámetros, perímetros de la mayoría de especies tanto animales como plantas, errores cometidos en la medición de la mayoría de las magnitudes, caracteres fisiológicos, psicológicos o aquellos que se obtengan en general como suma de otros factores, se distribuyen siguiendo un modelo cuya función de densidad adopta una particular forma y que se conoce como modelo de la distribución Normal.

Funcion de densidad de la Normal

Función de densidad de la distribución normal de media µ y desviación típica σ

Cada modelo de distribución normal va a depender numéricamente de dos parámetros fundamentales que son la media aritmética μ y la desviación típica σ. Es decir, hay una infinidad de distribuciones normales. Por ejemplo: 

  • Se dice que el cociente intelectual de las personas sigue una distribución normal de media 100 y desviación típica 15. ¿Cuál sería la probabilidad de que una persona tenga un cociente entre…?
  • La estatura de los varones de entre 35 y 55 años en España sigue una distribución normal de media 172,9 cm y desviación típica 3,55 cm. ¿Cuál sería la probabilidad de que un varón…?
  • La distribución de las notas de selectividad en la asignatura de matemáticas sigue una distribución normal de media 5,85 y desviación típica 2,25. ¿Cuál sería la probabilidad de que un alumno…?
  • La distribución de pesos de una ganadería sigue una distribución normal de media 540 kg y desviación típica 15 kg. ¿Cuál sería la probabilidad de que en un grupo de 20 reses al menos la mitad…?

Por otro lado, en Estadística Inferencial el modelo de distribución normal aparece en resultados tan importantes como el Teorema Central del Límite, en las distribuciones en el muestreo de algunos parámetros como las medias muestrales o las proporciones muestrales, así como en aproximaciones de otros modelos teóricos como la distribución binomial o la de Poisson.

Así pues, con la distribución Normal, estamos ante un tema estratégico clave sobre el que se fundamentan y desarrollan otros muchos y que, por tanto, conviene cuanto menos familiarizar a cualquier persona que se "asome" al mundo de la estadística y probabilidad y, por supuesto, que han de conocer y entender todos aquellos que intenten profundizar en él en un futuro.

 

La distribución normal N(0, 1)

Aunque hay una infinidad de distribuciones normales, tantas como valores toman los dos parámetros anteriores,  µ y σ, obviamente todas se corresponden a un único tipo de función o familia de funciones con propiedades comunes en las que µ genera una traslación y σ un cambio de escala. Por ello, dentro de todas las posibles distribuciones normales se considera la que tiene por media cero y desviación típica uno, que usualmente se denota como N(0, 1), y que se establece como referente para hacer manejable este tipo de distribución. Todas las demás podrán relacionarse con la N(0, 1) y, por tanto, basta centrarse en el análisis de ésta y posteriormente trasladar su conocimiento al resto.

Funcion de densidad de la Normal

Función de densidad de la distribución normal de media 0 y desviación típica 1, la N(0, 1)

Por tanto, es la N(0, 1) es objeto  de minucioso y pormenorizado estudio cuando se busca investigar las diferentes probabilidades que toma su función de distribución.

Funcion de distribución de la Normal

Probabilidad para valores menores o iguales que zα

 La integral anterior no es elemental, es decir no existe una primitiva que pueda expresarse como un conjunto finito de operaciones de funciones elementales y consecuentemente no puede calcularse mediante la aplicación de la regla de Barrow. Por ello, usualmente lo que se aborda es la construcción de una tabla de valores aproximados ―la tabla de la normal cero uno― en la que se refleja el valor de p(z ≤ zα para un conjunto de valores de zα.

Tabla N(0, 1)Fragmento de la Tabla de la N(0, 1)

En la primera columna de la tabla se refleja el valor de desde 0 a 3,9 con incrementos de una décima (el extremo superior depende de la precisión empleada en el cálculo de valor de p(z ≤ zα )), y en la primera fila se consideran diez columnas etiquetadas desde 0,00 hasta 0,09, de manera que si zα = 0,76 entonces la p(z ≤ zα ) queda reflejada en la fila de etiquetada como 0,7 y en la columna 0,06 (0,76=0,7+0,06). Generalmente el valor de esta probabilidad se refleja con cuatro cifras decimales y cuando éstas no son suficientes hay tablas en la que se consideran cinco decimales. Indiquemos, de nuevo, que el cálculo de esa integral definida no es inmediato y, por ello, la precisión del valor reflejado en la tabla será dependiente del método de cálculo aproximado usado. Para valores de zα del orden de las milésimas o inferior puede considerarse una interpolación, por ejemplo si zα = 0,752 se realizaría una interpolación entre los valores correspondientes a zα = 0,75 y zα = 0,76, es decir, una interpolación posiblemente lineal (aunque no sería la más ajustada) entre los correspondientes valores que son 0,7734 y 0,7764.

Construida la tabla, también es posible plantearse el problema inverso, es decir, dada una probabilidad identificar el valor de zα correspondiente. Para ello se localiza el valor de dicha probabilidad en la tabla, y una vez encontrado entonces la fila y columna donde se ubica nos aporta dicho zα = fila+columna, pudiéndose abordar también una interpolación en caso de que la probabilidad dada no se localice exactamente en la tabla, sino que se encuentre entre dos elementos de la misma. 

Para valores negativos de zα,  para probabilidades asimilables a barridos a la derecha p(z > zα ) o franjas de probabilidad determinadas entre dos valores p(z-α ≤ z ≤ zα ), se recurre a ciertas estrategias sencillas basadas en razonamientos más o menos directos que utilizan como elementos fundamentales  la simetría de la curva y el valor unitario del área global bajo la misma.

 

Tipificación

Lo obtenido para esa distribución normal particular, la N(0, 1), es muy significativo y extrapolable a cualquier otra distribución normal, pues mediante una fácil transformación en la variable aleatoria Tipificación convertiremos cualquier pregunta directa o inversa sobre una normal cualquiera en una cuestión planteada sobre la N(0, 1) con su correspondiente respuesta rápida.

TipificaciónTipificación de una variable aleatoria

Consecuentemente la importancia de la N(0,1), de la tabla de valores asociada y de la tipificación es evidente. Las técnicas y estrategias que permiten la localización de cualquier valor de probabilidad de manera directa o las que se utilizan para la localización de valores críticos que dejan una determinada probabilidad a la izquierda, a la derecha o en una franja central manejo inverso, deben ser comprendidas y utilizadas perfectamente por los alumnos de bachillerato o de primeros cursos de estudios universitarios. Pero, esto no es óbice para preguntarse:  ¿la vigencia de la tabla de la N(0,1) es incuestionable?

 Preguntémenos y respondamos:

  • ¿Cántas veces realizamos el mismo tipo de razonamiento y estrategia en problemas de distribuciones normales?
  • ¿Cuántas veces repetiremos el procedimiento hasta automatizarlo?
  • ¿Cuántas veces llegaremos a cansarnos de tipificar y consultar la tabla, e interpolar valores?

La respuesta puede ser variable dependiendo de las circunstancias, del número de problemas y de preguntas que desee o necesite responder, pero estamos seguros de que si trabaja o estudia en este contexto la cuantificación será elevada. Por tanto, ¿no estima necesario y conveniente evitar este proceso? y simplemente ¿no desea proceder a realizar una consulta rápida y automática? Posiblemente esté pensando o diciendo ¡Sí! y aquí trataremos de dar satisfacción a su deseo con "La calculadora de la Normal". Quienes ya tengan cierta edad, recordarán lo imprescindibles que también eran las tablas de logaritmos o las tablas trigonométricas hace no mucho tiempo y quienes tengan menos edad podrán indagar por su cuenta y riesgo o en el enlace anterior.

 

La calculadora de la Normal

La calculadora de la Normal es una escena desarrollada con DescartesJS y lo que pretendemos es que cualquiera con conocimientos teóricos básicos, disponga de una herramienta fácil, directa y rápida que le permita abordar y resolver problemas relacionados con la distribución normal.


Somos conscientes que las calculadoras de gama alta con cierto nivel científico disponen de la posibilidad de cálculo de valores de probabilidad de cualquier distribución normal e incluso en algunos casos de cálculo de valores críticos, (z-valores). Sin embargo el interfaz o la secuencia de cálculo no suelen ser naturales y a menudo muy diferentes de unos modelos a otros. A nuestro entender no se produce esa estrecha comunión entre el modelo teórico que proporcionan el profesor o el libro y el escueto y solitario número con que responde la calculadora. Es por esto, entre otras cosas, por lo que decidimos emprender el desarrollo de una escena sencilla y útil, rápida y con aspectos muy elementales, tanto gráficos como algebraicos que mantengan al menos una mínima conexión necesaria en nuestra opinión con el desarrollo teórico clásico. Y aquí la tienen a su disposición:

Calculadora de la distribución Normal

 

El manejo es intuitivo y sencillo, no obstante puede consultar las indicaciones.

 

Finalmente, sólo nos queda indicaros que esperamos que la utilización de esta escena, de esta calculadora de la Normal, os resulte interesante desde el punto de vista didáctico y útil desde el punto de vista técnico y, en particular, para nuestros colegas docentes que les ayude a implementar el aprendizaje significativo de este tema que consideramos estratégico en Estadística y Probabilidad.

 


Nota bene técnica

Para aquellos interesados en las consideraciones y criterios matemáticos adoptados en el desarrollo de esta herramienta y sólo para ellos por ser cuestiones que, posiblemente, no interesen al usuario habitual― indiquemos algunos detalles técnicos:

  • El usuario establece la media y desviación típica y la calculadora realiza la tipificación a la N(0, 1) o viceversa. Aunque no sería necesario mostrar esta tipificación, se refleja por cuestión metodológica en entornos de aprendizaje donde conviene que ésta quede explicitada. Es una calculadora para cualquier media y desviación típica, por lo que representa una mejora respecto a lo habitual.
  • Internamente se contruye una tabla para la N(0,1) en la que se ha considerado como intervalo significativo [-4, 4], es decir, p(z<=-4)=0 p(z<=4)=1.
  • En el intervalo [-4, 4] se considera un partición regular de paso una diezmilésima, es decir los valores zα aportados por el usuario o determinados por la calculadora tienen una precisión de cuatro cifras decimales. Esto representa una mejora respecto a la tabla usual que suele estar restringida a dos decimales. Puede ampliarse a más cifras, pero en esta versión se ha ajustado a esta precisión buscando que la necesidad computacional no ralentice el tiempo de respuesta y sea adecuado para la mayoría de dispositivos actuales.
  • El cálculo de p(z ≤ zα ), para los valores de zα de esa partición comprendidos en [-4, 0], se realiza calculando la integral definida correspondiente mediante integración numérica aplicando la regla de Simpson compuesta que en este caso tiene una cota de error inferior a 1·10-19. En las escena se reflejan sólo 9 cifras decimales, pero podrían incluirse más (al menos hasta doce correspondientes a la precisión de cálculo interna de Descartes). Esto representa una mejora respecto a lo usual en las tablas que son cuatro o cinco cifras decimales.
  • El cálculo de p(z ≤ zα ), para los valores de zα de esa partición comprendidos en (0, 4] se determinan por simetría con los del intervalo [-4, 0] como 1-p(z ≤ -zα ).
  • En Inferencia Estadística, por ejemplo en intervalos de confianza o en contraste de hipótesis, es fundamental el manejo inverso de la tabla de la normal. En esta escena se ofrece la posibilidad de localización directa de valores que determinan ciertas probabilidades, tanto franjas de áreas entre dos valores (zα/2) como barridos a la izquierda o a la derecha (zα). La precisión es de cuatro cifras decimales, lo que representa una mejora respecto a lo usual.
Valora este artículo
(10 votos)

La dimensión histórica, social y cultural de las matemáticas debe programarse de manera cuidada y coordinada para ayudar a la comprensión de los conceptos a través de la perspectiva histórica, así como para contrastar las situaciones sociales de otros tiempos y culturas con la realidad actual, conociendo de manera más humana a los personajes y sus aportaciones, visibilizando las circunstancias personales de mujeres matemáticas y las dificultades que han tenido para acceder a la educación y a la ciencia. Resulta idóneo el uso de Internet y de las herramientas educativas existentes, de vídeos y películas sobre la vida y obra de los personajes matemáticos para lo que es de gran ayuda la pizarra digital, o el tradicional trabajo monográfico que ahora puede crear nuestro alumnado de forma colaborativa haciendo uso de los documentos compartidos. También podemos ir más allá, pues resulta sumamente enriquecedor para la formación competencial crear de forma colaborativa una línea del tiempo con la secuenciación cronológica de descubrimientos matemáticos. Además, debemos enseñar a nuestro alumnado a generar contenido matemático inédito y desarrollar la comunicación audiovisual desde las matemáticas con la creación de un audio o vídeo o poniendo voz a los personajes célebres de ambos géneros, organizando una cadena de radio matemática o un canal de televisión que entreviste de forma ficticia a dichos personajes.

El párrafo anterior están literalmente extraídos de la Orden de 14 de julio de 2016, por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado, que es la que conozco como docente en activo, pero estoy convencido de que las orientaciones y estrategias metodológicas aportadas serán de gran similitud con las ofrecidas por otras comunidades autónomas en el ámbito de sus competencias. 

ANTECEDENTES

RED Descartes posee una gran experiencia, reconocida además, en la radio ficción en Matemáticas, gracias a su programa "El personaje misterioso" conducido por Eva Perdiguero y Ángel Cabezudo, con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Pues bien, "La radio ficción en el aula de Matemáticas" es un proyecto del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija con los mismos objetivos que los de Radio Descartes, pero entre discentes en vez de entre docentes, que empieza durante el curso escolar 2015/2016 con un grupo de alumnos de Matemáticas Orientadas a las Enseñanzas Académicas en 3º de ESO, es decir, con 14 y 15 años de edad, que se coordina desde el aula virtual y comprende las fases que se relacionan a continuación.

 ELECCIÓN DEL PERSONAJE MATEMÁTICO Y DIFUSIÓN EN TWITTER

Cada equipo estará constituido libremente por dos personas que deberán elegir a un personaje matemático para entrevistar en un programa de radio, masculino o femenino garantizando la paridad en el aula, de modo que una persona ejerza de entrevistador y la otra represente al personaje seleccionado. Seguidamente, para información de todos y no repetir personajes, un miembro del equipo publicará un tuit con la composición del mismo, incluyendo el personaje seleccionado con una imagen y el hashtag del curso #MATES3BAJO.

 DOCUMENTACIÓN

En la segunda fase, cada equipo realizará una búsqueda de información en internet sobre la vida y obra del personaje elegido para entrevistar.
Pueden ser documentos de texto, imágenes con información, presentaciones, infografías, vídeos, audios y cualquier multimedia, en general.
Es fundamental que la información provenga de fuentes fiables, así que se hará una selección de dos o tres recursos y se compartirán en el foro habilitado en el aula virtual las direcciones de cada uno de ellos.
Después, cuando el profesor aprueba los recursos seleccionados, se tendrán que difundir esas direcciones por Twitter con el hashtag del curso #MATES3BAJO.

 ELABORACIÓN DEL GUION

Cada equipo tiene que elaborar un guion en un documento de texto con la entrevista completa y enviarla al profesor desde la tarea habilitada en el aula virtual, cuidando la expresión, el vocabulario y la escritura.

 INSTRUCCIONES PARA LA GRABACIÓN DE LA ENTREVISTA

 ¡Ha llegado el momento! Recuerda que son fundamentales la creatividad e imaginación del equipo, así que, si no tienes experiencia anterior a la hora de protagonizar un programa de radio, te daré algunos consejos:

  1. Busca un espacio exento de ruidos, internos o externos, y evitarás sorpresas de última hora y pérdida de tiempo.
  2. Es muy importante ensayar algunas veces y vocalizar perfectamente, haciendo algunas pruebas hasta conseguir el efecto deseado.
  3. Es muy complicado grabar la entrevista de una sola vez, por ello aconsejamos grabarla por partes, según se estime oportuno.
  4. Conviene dejar grabando unos segundos de silencio después de cada intervención, lo que facilita la edición y montaje de la entrevista completa.
  5. Tenéis que hablar con tranquilidad y vocalizando lo mejor posible.
  6. El protagonista es el entrevistado, es decir, el personaje matemático, no el periodista. No obstante, ambos deben transmitir emociones al público, evitando usar un tono constante.
  7. Evitar apostillar las respuestas del entrevistado. Conforme el entrevistado va contestando, no debemos decir “ya”, “claro”.
  8. Como todo programa de radio, deberá contener una presentación, donde se explique el objetivo de la sesión, y una despedida, dando un pequeño resumen de lo tratado y agradeciendo, en nombre de la cadena, la presencia del entrevistado.

La mejor forma de conocer el producto final deseado es oir algunas entrevistas similares.

Encontrarás una docena de entrevistas a personajes matemáticos que te servirán de orientación, sin olvidar que están realizadas por docentes para docentes, mientras que las vuestras son de alumnos para alumnos, y se recomienda que no sobrepasen los cinco minutos de duración.

 EDICIÓN DEL AUDIO

Una vez grabada la entrevista, te aconsejo hacer una copia de la misma y guardarla en una carpeta llamada copia de seguridad, para evitar posibles problemas, ya que ahora procede editar los distintos archivos para proceder a enriquecer el audio con las uniones correspondientes, incluyendo la presentación, despedida, sintonía del programa de radio, efectos sonoros, etc, para lo que es fundamental la creatividad e imaginación del equipo.

En ningún momento podrás incluir música o sonidos que tengan derechos de autor, es decir, copyright, debiendo usar recursos originales o que tengan licencias que lo permitan, como las Creative Commons. Así que, para ello, te recomiendo que uses el

Descárgate los archivos que sean de tu agrado en formato mp3, preferiblemente.

Abrimos en el aula virtual un foro denominado "Soporte técnico" para que, entre todos, planteemos las dificultades que encontremos y poder compartir soluciones conforme vayamos aprendiendo. 

 ENTREGA DEL AUDIO

Una vez finalizada la edición del audio con los efectos especiales y el equipo considere concluída la entrevista, deberá generar con el software empleado un archivo en formato mp3 para entregarlo desde la tarea habilitada en la plataforma, o bien usar un conversor para pasar su archivo al formato solicitado.

Pues bien, en el marco del proyecto "La radio ficción en el aula de Matemáticas", compartimos en este segundo artículo la entrevista realizada por una alumna y un alumno de 3º ESO a Euclides, conocido como "El Padre de la Geometría".

Felicito a Ángela y Alejandro por su creatividad, imaginación y transmisión de emociones para dar a conocer la vida y obra del autor de los Elementos.

Enlace a la entrevista en iVoox

 

Valora este artículo
(28 votos)

Durante los días 3 y 4 de noviembre de 2017 se celebraron, en el aulario de la Universidad Pública de Navarra, las V Jornadas de Enseñanza de las Matemáticas en Navarra, organizadas conjuntamente por la Sociedad Navarra de Profesores de Matemáticas "TORNAMIRA", el CAP de Pamplona y la UPNA, con el objetivo de lograr un lugar de encuentro para docentes desde la etapa de educación infantil hasta la universitaria, constituir un foro de comunicación de trabajos, experiencias e inquietudes del profesorado de matemáticas en la Comunidad Foral de Navarra, así como un elemento más que contribuya a transmitir y a hacer visible la cultura matemática en la sociedad navarra.

Cartel V JEMNA

La RED Descartes estuvo representada por Rita Jiménez Igea, profesora de matemáticas en el IES Tomás Mingot de Logroño, quien presentó el taller titulado "¿A qué jugamos hoy en clase de Mates?", un REA (Recurso Educativo Abierto) con sugerencias didácticas para usar en el aula escenas de Descartes que contienen un juego o pasatiempo y trabajar conceptos y contenidos del currículo de Matemáticas,  principalmente  de  secundaria, aunque también aplicables en primaria. Todas las escenas permiten jugar y/o simular el juego tantas veces como se desee, pertenecen al Proyecto Descartes y están publicadas en el enlace superior.

Podemos encontrar escenas interactivas que son un juego y al usarlas se están trabajando los contenidos, escenas a partir de las cuales se sugiere cómo crear puzzles que permiten a los alumnos trabajar algunos conceptos, escenas que recrean un juego conocido y al plantear preguntas podemos descubrir las matemáticas que contiene ese juego y usarlas para ganar, etc...

 Rita Jiménez Igea presenta el taller 4

Debemos tratar de encontrar y llevar al aula materiales y recursos que estimulen al alumno. Las Tics, los pasatiempos, los juegos, los materiales manipulativos son buenas opciones que hacen que salgamos de la monotonía de la pizarra, el cuaderno y los ejercicios de lápiz y papel. Este recurso pretende dar ideas y sugerencias de cómo llevar al aula estas escenas y juegos. No es un trabajo completo y cerrado. Es una primera vía de trabajo porque seguro que cada profesor conseguirá enfoques nuevos, plantear otro tipo de preguntas y utilizar estas escenas de otra forma.

Para generar el REA se ha utilizado eXeLearning (software libre) que permite incluir actividades interactivas tipo rellenar huecos, actividades tipo test, de verdadero o falso, etc. con autocorrección y/o retroalimentación, además permite incrustar páginas web, escenas de Descartes o Geogebra, applets de Java, imágenes , videos etc…

También podemos encontrar este Recurso Educativo Abierto compartido en el espacio Procomún.

Finalmente, compartimos en nuestro portal la presentación y el texto íntegro de la comunicación presentada por Rita Jiménez Igea.

Página 45 de 104

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information