Valora este artículo
(5 votos)

Durante 2017 se ha trabajado intensamente en la renovación y actualización del Proyecto "Aplicación de juegos didácticos en el aula", proyecto que promueve la inclusión de juegos didácticos basados en escenas de Descartes en la práctica docente. Las principales cambios e innovaciones introducidas son las siguientes:

  • Renovación y reoorganización por completo del diseño de la web, blog y DVD del proyecto.
  • Diseño y puesta en funcionamiento de un canal de YouTube para el proyecto.
  • Mejora en el diseño, programación y funcionamiento de todos los juegos didácticos.
  • Inclusión de nuevos juegos hasta llegar a la cifra de 414.
  • Diseño y puesta en funcionamiento de un nuevo generador de ficheros de preguntas para juegos.
  • Rediseño de la sección de video-tutoriales y de sus contenidos.
  • Renovación y actualización del curso "Aplicación de juegos didácticos en el aula".
  • Renovado y actualización del curso "Creación de animaciones y juegos interactivos para el aula". Adaptación del curso al nuevo editor de escenas basado en javascript.
  • Realización de una nueva guía rápida de utilización de juegos didácticos.
  • Actualización de las presentaciones y documentos del proyecto.

Recordamos que los contenidos del proyecto se encuentran en su: webblogDVD y canal de YouTube. En el siguiente vídeo se presentan las secciones de este renovado proyecto. 

Viernes, 08 Diciembre 2017 01:13

PISA 2017. Comprensión lectora

Escrito por
Valora este artículo
(5 votos)

Aviso en el supermercado es una unidad didáctica interactiva que pertenece al apartado de Comprensión lectora del grupo PISA 2017. Las unidades de este grupo forman parte del Proyecto Competencias de la RED y han sido elaboradas a partir de unidades liberadas PISA.

Para facilitar su consulta, están agrupadas cinco grandes bloques: ciencias, comprensión lectora, finanzas, matemáticas y resolución de problemas.

Valora este artículo
(8 votos)

 

Misceláneas. Lugares geométricos. Cuadraturas V. La cuadratura del círculo.


Como prólogo a un breve estudio sobre la cuadratura del círculo, hemos analizado la manera de cuadrar algunos polígonos y hecho una breve reflexión sobre los teselados. En particular se ha visto, entre otros asuntos, el método general de cuadrar los polígonos regulares y referente a las teselaciones se ha mostrado, entre otras, la manera de teselar un triángulo cordobés con una sucesión de triángulos cordobeses.

Dentro del tema que nos ocupa: los Lugares geométricos también, en su día, estudiamos las Trisectrices de Hipias y Nicomedes y en otros artículos se han expuesto misceláneas y escenas que desarrollan la espiral de Arquímedes y la cuadratriz de Dinostrato; no obstante en la presente entrada volvemos a insistir en el estudio de las primeras curvas mecánicas o lugares geométricos creados por estos autores por su evidente interés y para animar a la conversión en misceláneas de las escenas que aún no lo son.

Anteriormente hemos enlazado el extraordinario trabajo del profesor Fernando Bombal sobre la cuadratura del círculo, volvemos a hacerlo y en el leemos:

trisectriz
curva trisectriz (cuadratriz) 

Recomendamos la lectura completa del documento así como el análisis de su extensa bibliografía.

También en entradas anteriores hemos enlazado con el blog de Miguel Ángel Morales Medina, en esta ocasión lo hacemos al básico pero minucioso artículo sobre la cuadratura del círculo: ¿Quién dijo que la cuadratura del círculo era imposible?.


cuadratura
Blog Gaussianos 

A continuación y también como prolegómeno al estudio de la cuadratura del círculo enlazamos con dos pequeños trabajos sobre la cuadratura de las lúnulas: el primero de ellos creado con DescartesJS y el segundo con el programa GeoGebra.

  • Cuadratura de una lúnula I: Con la ayuda de dos semicírculos creamos una lúnula y aplicando el teorema de Hipócrates de Chios encontramos, según se muestra en la siguiente escena interactiva, un triángulo de igual área que dicha lúnula. Cuadrando el triángulo obtenemos la cuadratura de la lúnula.

    Escena desarrollada con DescartesJS.


    cuadratura de una lúnula

  • Cuadratura de una lúnula II: actuando de forma análoga a como hemos hecho en la escena anterior obtenemos la cuadratura de una lúnula con el programa GeoGebra



    cuadratura de una lúnula



Las escenas que se exponen a continuación son recreaciones de otras ya expuestas en este blog y tienen como objetivo refrescar la memoria sobre las curvas mecánicas mencionadas anteriormente.

Todos los trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.

La trisectriz de Hípias



trisectriz

La trisectriz - cuadratriz de Hípias - Dinostrato

En la siguiente escena se determina un segmento relacionado directamente con el número π utilizando la trisectriz - cuadratriz de Hípias - Dinostrato



trisectriz - cuadratriz

Las siguientes utilidades muestran: la primera, además de las ecuaciones paramétricas de la espiral, la manera como se genera el lugar geométrico conocido como espiral de Arquímedes y la otra la determinación de un segmento de longitud raiz cuadrada de π, en esta ocasión mediante la mencionada espiral de Arquímedes y la ecuación cartesiana de dicho lugar geométrico.


espiral de Arquímedes



deducción de raiz de π con la espiral de Arquímedes

En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la deducción, paso a paso, del área de las lúnulas de Hipócrates.


,

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con las cuadraturas estudiadas para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos. Cuadraturas"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

Viernes, 01 Diciembre 2017 18:36

EDAD 1ºESO Fracciones

Escrito por
Valora este artículo
(4 votos)

Este mes vamos a ver el resumen de fracciones de 1ºESO:

Hemos tratado los siguientes puntos en nuestro vídeo:

1.Concepto de fracción.
   Las fracciones en nuestra vida.            
   Elementos de una fracción.       
   Cómo se lee una fracción.
   El valor de una fracción.
   Pasar una fracción a un decimal.  

2.Fracciones equivalentes.
   Fracciones equivalentes.
   Productos cruzados.    
   Simplificar una fracción.

3.Operaciones con fracciones.
   Paso a común denominador.
   Suma de fracciones.
   Suma y resta de fracciones.
   Multiplicación de fracciones.
   Fracción inversa de una fracción.
   División de fracciones.
   Operaciones combinadas

4.Aplicaciones
   Problemas con fracciones

 

 

 

Viernes, 10 Noviembre 2017 00:23

Formación en Competencias. PISA 2017

Escrito por
Valora este artículo
(7 votos)

Esta semana presentamos una serie de objetos interactivos que forman el grupo PISA 2017 (con algunos objetos diseñados para la modalidad de evaluación con papel y otros con ordenador), patrocinado por el INTEF del Ministerio de Educación de España, para 4º de Educación Secundaria.

Este grupo pertenece al Proyecto Competencias, un proyecto de la RED Descartes con múltiples actividades interactivas para la formación y evaluación competencial. Sus contenidos se basan en las unidades liberadas de PISA y en las Pruebas de Evaluación de Diagnóstico de diferentes Comunidades Autónomas españolas.

Como muestra de las actividades, en el siguiente vídeo, se puede ver con detalle la unidad interactiva meteoroides y cráteres perteneciente a este grupo.

Viernes, 03 Noviembre 2017 21:25

EDAD 4ºESO Opc. A Probabilidad

Escrito por
Valora este artículo
(5 votos)

Este mes vamos a ver una unidad de Probabilidad de 4ºESO:

Hemos tratado estos puntos:

1.Experimentos aleatorios
   Espacio muestral y sucesos
   Operaciones con sucesos
   Sucesos compatibles,incompatibles
   
2.Probabilidad de un suceso
   Regla de Laplace
   Frecuencia y probabilidad
   Propiedades de la probabilidad
 
3.Experiementos compuestos
   Regla de la multiplicación
   Extracciones con y sin devolución
   Probabilidad condicionada
   Probabilidad con diagramas de árbol

Valora este artículo
(7 votos)

CUADRATURAS IV.

La cantidad de patrones de teselado, por lo tanto la cantidad de teselados, es infinita e inagotable. También lo es la cantidad de no teselados. Los alarifes que hicieron posible la habitación de retiro de la reina y sus alrededores, en la alhambra de Granada, hicieron realmente, poesía geométrica viva, dinámica, sensorial, placentera, evocativa…

Hacemos hincapié en el estudio de los patrones más elementales del grupo de los básicos con objeto de analizar como una sutil variación en la forma o el color produce efectos anímicos y visuales muy diferentes y así facilitar el proceso de análisis y creación de las teselaciones más complejas.

Además de nuevos enlaces volvemos a mostrar, por su interés, algunos de los ya expuestos en entradas anteriores:

tesela
patrones y teselados 

Para quien considere necesaria una inmersión en los conceptos básicos relacionados con las teselaciones hemos preparado los siguientes contenidos:

tesela
tesela pentagonal 

La imagen anterior enlaza con una unidad que, en su día, desarrolló el profesor Ángel Aguirre Pérez y que he comenzado a adaptar a DescartesJS debido a que sus objetivos son similares a los que nos proponemos en este artículo y por tanto nos introduce en el tema de la forma clásica y básica.

Consideramos, por tanto, que el estudio se centra en el problema clásico de la cuadratura del círculo y que nos acercamos a él haciendo, primero, la cuadratura de algunos polígonos regulares y no regulares. No debe olvidarse la idea de círculo como límite, cuando el número de lados tiende a infinito, de los polígonos regulares.

Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.



Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Currículo para ESO y Bachillerato.

Todos los trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.

A poco que se observen los trabjos de teselción expuestos o enlazados se evidencia que en cada uno de ellos se reproduce un patrón. Existe un amplio grupo de patrones y entre los más elementales están los conocidos como 'tipo mitad del cuadrado' que son los que se obtienen descomponiendo el cuadrado en dos o más partes diferenciadas, en nuestro caso, por el color, de manera que ambas formas tengan igual área. A continuación se exponen varios ejemplos de estos patrones que aclaran el concepto.

  • Estudio de los patrones y sus teselaciones correspondientes tipo "mitad del cuadrado".
    Mitad del cuadrado I.

    mitad del cuadrado VI
    Mitad del cuadrado: Patrón 6

  • Mitad del cuadrado II.

    mitad del cuadrado II
    Mitad del cuadrado: Patrón 7



  • Mitad del cuadrado III.
    Este patrón ya ha sido expuesto en entradas anteriores, en la actual enlazamos con un ejemplo de las teselaciones a que da lugar.

    Mitad del cuadrado
    Mitad del cuadrado: Patrón 8



  • Mitad del cuadrado IV.

    Mitad del cuadrado
    Mitad del cuadrado: Patrón 9



  • Mitad del cuadrado V.

    cuadratura del triángulo
    Mitad del cuadrado: Patrón 10

A continuación exponemos los trabajos que desarrollan la cuadratura del pentágono regular, tanto con DescartesJS como con GeoGebra.

  • Cuadratura de un pentágono regular de lado AB. La miscelánea Pentágono regular: Cuadratura. Método clásico detalla más explícitamente la misma escena.

    cuadratura del pentágono
    cuadratura del pentágono

    Recordamos que:
    • La circunferencia c tiene de centro el punto D' y radio A'B'.
    • El arco c2 tiene de centro el punto G' (punto medio de B'F') y radio G'B'.
    • El arco c3 tiene de centro el punto D' y radio D'H'.
  • La misma cuadratura realizada con el programa GeoGebra

    cuadratura del pentágono
    cuadratura del pentágono

En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la creación, paso a paso, de una tesela reutilizando un "cede (CD)".


Interesante manualidad sobre teselación.

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con las cuadraturas estudiadss para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos. Cuadraturas"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

Una forma lúdica de teselar es resolver un rompecabezas, esto es un ejercicio para ejercitar la memoria visual y otras habilidades por lo que proponemos, temporalmente, un amplio grupo de puzles para su resolución, uso y disfrute.


Juegos para entrenar la memoria visual.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

 

Valora este artículo
(20 votos)

La dimensión histórica, social y cultural de las matemáticas debe programarse de manera cuidada y coordinada para ayudar a la comprensión de los conceptos a través de la perspectiva histórica, así como para contrastar las situaciones sociales de otros tiempos y culturas con la realidad actual, conociendo de manera más humana a los personajes y sus aportaciones, visibilizando las circunstancias personales de mujeres matemáticas y las dificultades que han tenido para acceder a la educación y a la ciencia. Resulta idóneo el uso de Internet y de las herramientas educativas existentes, de vídeos y películas sobre la vida y obra de los personajes matemáticos para lo que es de gran ayuda la pizarra digital, o el tradicional trabajo monográfico que ahora puede crear nuestro alumnado de forma colaborativa haciendo uso de los documentos compartidos. También podemos ir más allá, pues resulta sumamente enriquecedor para la formación competencial crear de forma colaborativa una línea del tiempo con la secuenciación cronológica de descubrimientos matemáticos. Además, debemos enseñar a nuestro alumnado a generar contenido matemático inédito y desarrollar la comunicación audiovisual desde las matemáticas con la creación de un audio o vídeo o poniendo voz a los personajes célebres de ambos géneros, organizando una cadena de radio matemática o un canal de televisión que entreviste de forma ficticia a dichos personajes.

El párrafo anterior están literalmente extraídos de la Orden de 14 de julio de 2016, por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado, que es la que conozco como docente en activo, pero estoy convencido de que las orientaciones y estrategias metodológicas aportadas serán de gran similitud con las ofrecidas por otras comunidades autónomas en el ámbito de sus competencias. 

ANTECEDENTES

RED Descartes posee una gran experiencia, reconocida además, en la radio ficción en Matemáticas, gracias a su programa "El personaje misterioso" conducido por Eva Perdiguero y Ángel Cabezudo, con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Pues bien, "La radio ficción en el aula de Matemáticas" es un proyecto del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija con los mismos objetivos que los de Radio Descartes, pero entre discentes en vez de entre docentes, que empieza durante el curso escolar 2015/2016 con un grupo de alumnos de Matemáticas Orientadas a las Enseñanzas Académicas en 3º de ESO, es decir, con 14 y 15 años de edad, que se coordina desde el aula virtual y comprende las fases que se relacionan a continuación.

 ELECCIÓN DEL PERSONAJE MATEMÁTICO Y DIFUSIÓN EN TWITTER

Cada equipo estará constituido libremente por dos personas que deberán elegir a un personaje matemático para entrevistar en un programa de radio, masculino o femenino garantizando la paridad en el aula, de modo que una persona ejerza de entrevistador y la otra represente al personaje seleccionado. Seguidamente, para información de todos y no repetir personajes, un miembro del equipo publicará un tuit con la composición del mismo, incluyendo el personaje seleccionado con una imagen y el hashtag del curso #MATES3BAJO.

 DOCUMENTACIÓN

En la segunda fase, cada equipo realizará una búsqueda de información en internet sobre la vida y obra del personaje elegido para entrevistar.
Pueden ser documentos de texto, imágenes con información, presentaciones, infografías, vídeos, audios y cualquier multimedia, en general.
Es fundamental que la información provenga de fuentes fiables, así que se hará una selección de dos o tres recursos y se compartirán en el foro habilitado en el aula virtual las direcciones de cada uno de ellos.
Después, cuando el profesor aprueba los recursos seleccionados, se tendrán que difundir esas direcciones por Twitter con el hashtag del curso #MATES3BAJO.

 ELABORACIÓN DEL GUION

Cada equipo tiene que elaborar un guion en un documento de texto con la entrevista completa y enviarla al profesor desde la tarea habilitada en el aula virtual, cuidando la expresión, el vocabulario y la escritura.

 INSTRUCCIONES PARA LA GRABACIÓN DE LA ENTREVISTA

 ¡Ha llegado el momento! Recuerda que son fundamentales la creatividad e imaginación del equipo, así que, si no tienes experiencia anterior a la hora de protagonizar un programa de radio, te daré algunos consejos:

  1. Busca un espacio exento de ruidos, internos o externos, y evitarás sorpresas de última hora y pérdida de tiempo.
  2. Es muy importante ensayar algunas veces y vocalizar perfectamente, haciendo algunas pruebas hasta conseguir el efecto deseado.
  3. Es muy complicado grabar la entrevista de una sola vez, por ello aconsejamos grabarla por partes, según se estime oportuno.
  4. Conviene dejar grabando unos segundos de silencio después de cada intervención, lo que facilita la edición y montaje de la entrevista completa.
  5. Tenéis que hablar con tranquilidad y vocalizando lo mejor posible.
  6. El protagonista es el entrevistado, es decir, el personaje matemático, no el periodista. No obstante, ambos deben transmitir emociones al público, evitando usar un tono constante.
  7. Evitar apostillar las respuestas del entrevistado. Conforme el entrevistado va contestando, no debemos decir “ya”, “claro”.
  8. Como todo programa de radio, deberá contener una presentación, donde se explique el objetivo de la sesión, y una despedida, dando un pequeño resumen de lo tratado y agradeciendo, en nombre de la cadena, la presencia del entrevistado.

La mejor forma de conocer el producto final deseado es oir algunas entrevistas similares.

Encontrarás una docena de entrevistas a personajes matemáticos que te servirán de orientación, sin olvidar que están realizadas por docentes para docentes, mientras que las vuestras son de alumnos para alumnos, y se recomienda que no sobrepasen los cinco minutos de duración.

 EDICIÓN DEL AUDIO

Una vez grabada la entrevista, te aconsejo hacer una copia de la misma y guardarla en una carpeta llamada copia de seguridad, para evitar posibles problemas, ya que ahora procede editar los distintos archivos para proceder a enriquecer el audio con las uniones correspondientes, incluyendo la presentación, despedida, sintonía del programa de radio, efectos sonoros, etc, para lo que es fundamental la creatividad e imaginación del equipo.

En ningún momento podrás incluir música o sonidos que tengan derechos de autor, es decir, copyright, debiendo usar recursos originales o que tengan licencias que lo permitan, como las Creative Commons. Así que, para ello, te recomiendo que uses el

Descárgate los archivos que sean de tu agrado en formato mp3, preferiblemente.

Abrimos en el aula virtual un foro denominado "Soporte técnico" para que, entre todos, planteemos las dificultades que encontremos y poder compartir soluciones conforme vayamos aprendiendo. 

 ENTREGA DEL AUDIO

Una vez finalizada la edición del audio con los efectos especiales y el equipo considere concluída la entrevista, deberá generar con el software empleado un archivo en formato mp3 para entregarlo desde la tarea habilitada en la plataforma, o bien usar un conversor para pasar su archivo al formato solicitado.

Pues bien, en el marco del proyecto "La radio ficción en el aula de Matemáticas", compartimos en este segundo artículo la entrevista realizada por dos alumnas de 3º ESO a Mary Somerville, conocida como "La Reina de las ciencias del siglo XIX".

Por cierto, he de reconocer ante los usuarios y seguidores de RED Descartes que, como profesor de Matemáticas, desconocía la grandeza de la obra de Mary Somerville, por lo que agradezco a María y Julia, o Julia y María, que me ilustraran al respecto desde su estupendo programa "Radio pi al cuadrado", que recomiendo oir en su totalidad y percibir la emoción que transmiten.

Enlace a la entrevista en nuestro canal de iVoox

 

Guardar

Guardar

Valora este artículo
(5 votos)

Entre los diferentes proyectos de la RED Descartes disponemos de múltiples actividades interactivas para el estudio de la geometría. En este vídeo presentamos dos actividades, del proyecto Miscelánea, que tratan diferentes aspectos relacionados con el estudio de los triángulos.

Una vez seleccionadas las actividades vamos a ver cómo se pueden insertar en un curso Moodle mediante el código para abrir en ventana emergente.  

Viernes, 06 Octubre 2017 22:30

EDAD 3ºESO Sucesiones

Escrito por
Valora este artículo
(3 votos)

Este mes vamos a ver la unidad de sucesiones de 3ºESO:

Hemos tratado las siguientes secciones:

1.Sucesiones         
   Definición. Regla de formación
   Término general

2.Progresiones Aritméticas          
   Definición
   Término general
   Suma de n términos

3.Progresiones Geométrica          
   Definición
   Término general
   Suma de n términos
   Suma de todos los términos
   Producto de n términos
4.Aplicaciones              
   Interpolación
   Interés Compuesto
   Resolución de problemas

 

Página 47 de 105

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information