buscar Buscar en RED Descartes    

Valora este artículo
(3 votos)

Proporcionalidad. Las Espirales XII

Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.


Telesecundaria GEOgráfica

Telesecundaria

Como muestra enlazamos la unidad sobre Crecimiento Exponencial, del subproyecto TELESECUNDARIA,

telesecundaria

la GEOevaluación de los estados y ciudades de México.

GEOevaluación

y el ejemplo de: Asocia parejas de imágenes y textos (2).

Puzle

Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D en particular los materiales de 2º y 4º LOMCE y las adaptaciones de los trabajos de Javier de la Escosura Caballero: "Geometría dinámica del trángulo" que enlazamos a continuación

geometria_dinamica

y el de Cuadrilateralia, donde se fomenta el estudio y conocimiento de las características matemáticas de los objetos mediante la manipulación virtual de los mismos y que enlazamos con la imagen siguiente.

geometria_dinamica

Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el primero de los métodos para trisecar un ángulo con la Concoide de Nicomedes. El ángulo a trisecar es el formado por el eje polar y la recta que une el polo con el punto que se desplaza por la directriz.
El análisis de la escena y su modificación, fundamentalmente en la situación del tercio del ángulo mencionado anteriormente, nos lleva a descubrir interesantes características de la Concoide. También son interesantes las modificaciones funcionales que mejoren las prestaciones de la utilidad.
Mencionar, por último, que la escena es copia de la que en su día publicó el profesor Pedro González Enríquez en su trabajo sobre las trisectrices.

Entradas anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por uno y dos puntos y algunas de las utilidades de los l.g. generados por un punto, en la actual comenzamos a mostrar algunos de los usos de la Concoide.

En esta ocasión, en la sección de vídeo, hemos elegido, debido a su calidad e interés, el mismo que en la entrada anterior, que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografías y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.

Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Lituus" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:

  • Hemos creado la siguiente escena: Espiral de Lituus

  • Inclusión de parte del código de la escena anterior en el de la miscelánea en proyecto.

La escena del proyecto puede verse a continuación:

Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Lituus incluida.

También, relacionado con el tema de los lugares geométricos (l.g.) y la trisección del ángulo, hemos incluido los trabajos realizados con el programa GeoGebra donde se muestran dos metodos para trisecar un ángulo con la Concoide de Nicomedes.

Método 1.

Método 2.

En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Ildefonso Fernández Trujillo

 

Valora este artículo
(16 votos)

En mi último artículo hacía referencia a la reciente publicación de la Orden por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, convencido de que tendrá gran similitud con las publicadas por los organismos competentes en otras comunidades autónomas. Extraído literalmente, podemos encontrar que la  habilidad  de  formular, plantear, interpretar y resolver problemas es una de las capacidades esenciales de la actividad matemática, estando involucradas muchas otras competencias además de la matemática (CMCT), entre  otras,  la  comunicación  lingüística  (CCL),  al  leer  de  forma  comprensiva  los  enunciados  y  comunicar  los resultados obtenidos; el sentido de iniciativa y emprendimiento (SIEP), al establecer un plan de trabajo en revisión y modificación continua en la medida que se va resolviendo el problema; la competencia digital (CD), al tratar de forma adecuada la información y, en su caso, servir de apoyo a la resolución del problema y comprobación de la solución; o la competencia social y cívica (CSC), al implicar una actitud abierta ante diferentes soluciones.

En otro de los párrafos de la orden se nos dice que el  uso  de  los  recursos  TIC  en  la  enseñanza  y  el  aprendizaje  de  las  matemáticas,  las  calculadoras  y el  software  específico  deben  convertirse  en  herramientas  habituales  para  la  construcción  del  pensamiento matemático, introduciendo elementos novedosos como las aplicaciones multimedia tales como libros interactivos con simuladores, cuestionarios de corrección y autoevaluación automatizados, etc. que, en cualquier caso, deben enriquecer el proceso de evaluación del alumnado. Además, el uso de blogs, wikis, gestores de contenido CMS, plataformas de e-learning, repositorios multimedia, aplicaciones en línea y entornos colaborativos favorecen el aprendizaje constructivo y cooperativo.

Finalmente, también hay una frase en la que se menciona la utilización de medios tecnológicos en  el  proceso  de  aprendizaje  para la realización de cálculos de tipo numérico, algebraico o estadístico, así como para comunicar y compartir, en entornos apropiados, la información y las ideas matemáticas.

Pero como docentes, ¿de qué forma podemos afrontar esta demanda y qué tipo de actividades planificar para conseguirlo?

El Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija ha realizado con un grupo de 4º ESO durante el curso 2015/2016 la iniciativa denominada "Aprendemos a resolver problemas con Descartes", basada en la experiencia para el "Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes" y llevaba a cabo anteriormente con el alumnado de 1º de Bachillerato de Ciencias e Ingeniería.

En el primer artículo enlazado en el párrafo anterior encontrarás todos los detalles de la experiencia, desglosada en tres fases en las que puedes comprobar que es una sencilla actividad que se adapta a lo establecido en la orden, así que te animamos a ponerla en práctica con tus alumnos y alumnas y, por supuesto, a compartir tus iniciativas.

 
En esta ocasión, el equipo de trabajo decidió usar Photomath como herramienta tecnológica para ayudar en los cálculos de la resolución del problema. Se le conoce con el nombre de "cámara calculadora" y es una aplicación para tableta o smartphone que resuelve operaciones aritméticas y algebraicas o simbólicas, en general, con tan sólo apuntar la cámara de nuestro smartphone hacia la operación y obtener en segundos la solución sobre la pantalla. Su funcionamiento es similar a la lectura de códigos QR.
 
Uno de los valores añadidos a esta experiencia es que todos los vídeos producidos son diferentes, mostrando siempre la creatividad, imaginación y personalidad de sus autores y autoras, así como el trabajo colaborativo realizado y el desarrollo competencial.
 
Si visualizas y oyes el vídeo con detenimiento, sin duda, encontrarás leves errores de expresión escrita o verbal, tanto en el lenguaje ordinario como en el lenguaje matemático, lo que nos induce a dar una continuidad a la iniciativa y extrapolarla a otros cursos para ir consiguiendo nuestro objetivo paulatinamente. Además, la localización y análisis de errores es una de las mejores estrategias de aprendizaje. No obstante, quiero desde aquí felicitar a todos mis alumnos y alumnas de 4º A por sorprenderme con su creatividad e imaginación, por ser competentes para generar contenido multimedia con sus dispositivos móviles, sin que su profesor sepa ayudarles en este ámbito, por afrontar todos los retos que se han encontrado por el camino hasta conseguir el producto final y por permitirme descubrir y fomentar algunas de sus capacidades ocultas.
 
Muchas gracias también a sus familias por apoyar la iniciativa autorizando las grabaciones y su difusión por las redes sociales, lo que obviamente repercute en una mejora de la formación de sus hijos e hijas como ciudadanos y ciudadanas del s. XXI y en su preparación para la siguiente etapa educativa. 

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Valora este artículo
(14 votos)

Recientemente se ha publicado la Orden por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado. Como docente andaluz, hago referencia a la misma, aunque estoy convencido de que tendrá gran similitud con las publicadas por los organismos competentes en otras comunidades autónomas.

Pues bien, en la sección dedicada a las estrategias metodológicas, se recoge que para el bloque de Geometría es conveniente la experimentación a través de la manipulación y aprovechar las posibilidades que ofrecen los recursos digitales interactivos para construir, investigar y deducir propiedades. En base a ello, quiero compartir con todos esta sencilla actividad consistente en la construcción, manipulación y experimentación con los sólidos platónicos, que desarrollé con mi alumnado del 2º curso del desaparecido Programa de Cualificación Profesional Inicial, hoy Formación Profesional Básica, con quien tuve la fortuna de trabajar y aprender todo lo que son capaces de conseguir y ofrecer.

Organizados en equipos, prácticamente en una sesión tienen los cinco sólidos construidos en papel, pudiendo manipular, observar, tocar y contar sus elementos. Así que, en la siguiente sesión se puede pasar a la investigación, creando una tabla con los nombres de cada poliedro regular y contar y anotar el número de caras de cada uno, el número de aristas y el de vértices para que intenten redescubrir la fórmula de Euler.

Los recursos proceden del Proyecto Descartes y comparto la relación de los recomendados junto a sus enlaces para descarga o visualización:

Puede concluirse la experiencia proponiendo una actividad de ampliación, según la edad y capacidad del alumnado, consistente en dibujar en dos dimensiones los cinco sólidos platónicos conocidos sus vértices y teniendo en cuenta las aristas que no se ven, cuyos recursos también puedes encontrar en los siguientes enlaces de Proyecto Descartes:

La mayoría de estos recursos están seleccionados de la unidad interactiva del Proyecto ED@D" denominada "Cuerpos geométricos", que también se encuentra disponible en catalán y gallego: "Cossos geomètrics" y "Corpos xeométricos, aunque también algunos tienen su origen en la unidad didáctica dedicada a "Los poliedros regulares y la esfera".

Si compartimos nuestras experiencias de aula, que no tienen por qué ser grandiosas, aprendemos todos de todos y facilitamos nuestra tarea.

No olvides que estamos en la era de las cuatro ces: compartir, comunicar, colaborar y confiar. Además, RED Descartes pone sus servidores a tu disposición para divulgar las experiencias que desarrolles con los recursos de Proyecto Descartes. ¿Te animas?

Contacta con nosotros en Descartes@ProyectoDescartes.org

 

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

Viernes, 12 Agosto 2016 00:43

PISA con ordenador. Recursos

Escrito por
Valora este artículo
(4 votos)

Esta semana presentamos una serie de actividades que forman parte del grupo de objetos PISA con ordenador, incluido en el Proyecto Competencias de la RED Descartes. Estos recursos están estructurados como objetos de aprendizaje y se han creado a partir  del conjunto de preguntas liberadas en la edición PISA 2015, en la cual se introdujo la evaluación por medios informáticos.

Para cada tipo de pregunta se dispone de la versión original y la versión adaptada por la RED Descartes. En la versión adaptada, una vez finalizado el último ejercicio, se presentan diferentes opciones de corrección: corrección en pantalla, descarga en un fichero, envío por correo o impresión.

En el siguiente vídeo se presentan los objetos que forman parte de este proyecto y se muestran las actividades propuestas en el recurso síndrome de despoblamiento de colmenas.

Página 85 de 169

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information
Filter: