Continuamos con el estudio de los lugares geométricos y en esta entrada volvemos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Trisectriz (Cuadratriz) de Hipias" y "Concoide (Trisectriz) de Nicomedes" que son las curvas resultantes del trabajo de estos sabios griegos para resolver el problema de la trisección de un ángulo.
Dentro del amplio grupo de cicloides y demás ll.gg. retomamos el análisis de los mencionados anteriormente por su especial interés debido a que cronológicamente estas curvas están, después de la circunferencia, entre las primeras que fueron creadas y descritas.
Para llevar a la práctica el estudio remitimos a la publicación en el Blog de dos escenas que los generan de forma interactiva. Se aconseja ver los detalles de estas utilidades, repitiendo la animación, hasta comprender el proceso de creación de los ll.gg. Son escenas basadas en la obra del profesor Pedro González Enríquez, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS; no obstante, debido a su interés, las siguientes imágenes enlazan directamente con cada uno de los trabajos en su estado actual.
Estudio de la Trisectriz (Cuadratriz) de Hipias.
Estudio de la Concoide de Nicomedes
Animamos a conocer las nuevas caractrísticas del editor DescartesJS. Exponemos otra vez el ejemplo sobre probabilidad publicado en la entrada anterior como ilustración de lo que se puede hacer, en muy pocos minutos, reutilizando la documentación que aporta.

Introducción al concepto de probabilidad
Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrea el proceso de generación de la Concoide de Nicomedes, la trisectriz de Hipias y el uso por parte de Dinostrato de dicha trisectriz para hallar la cuadratura del círculo. Como ya se ha explicado esto se hace con el doble propósito de profundizar en el estudio de dichas curvas y ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.
Estudio de la Trisectriz (Concoide) de Nicomedes.

hoja de trabajo de la Concoide
La siguiente imagen es un vínculo a la utilidad que muestra la generación del l.g. "Trisectriz de Hipias" y su uso como trisector de ángulos agudos.
Tiene especial interés la consideración de que según el procedimiento mostrado, cuando el segmento horizontal que se desplaza verticalmente y el que gira alrededor de O, centro del círculo, son ambos horizontales ( k = 0), el punto M intersección de los mismos (generador del l.g.) está indefinido. Esta situación no interfiere en nada a la trisección pues ahí el ángulo a trisecar vale 0 rad, pero si es transcendental considerar la distancia, en ese instante de horizontalidad, del hipotético punto M, deducido por la tendencia de la curva antes y después de ese instante, al centro del círculo.
Dinostrato, entre otros, consideró la tendencia de la curva y llegó a la conclusión de que cuando k → 0 entonces d(O,M) → 2·r/π, hecho que le permitió cuadrar el círculo usando la trisectriz.
La herramienta enlazada comprueba lo anterior al hacer k = 0.
Estudio de la Trisectriz de Hipias.
Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
Esta vez en la sección de vídeo hemos elegido uno que muestra la creación de la Concoide de Nicomedes paso a paso. Consideramos que su uso en centros bilingües es muy adecuado por la claridad de la exposición.
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografia:
Ildefonso Fernández Trujillo. 2017
En el número 94 de la revista Epsilon de la Sociedad Andaluza de Educación Matemática Thales se ha publicado el artículo titulado "Sobre la forma y el crecimiento cordobés del Nautilus pompilius". Un detallado trabajo de investigación desarrollado dentro de nuestra RED Descartes, reflejándose así en la autoría, por los socios José R. Galo Sánchez, Ángel Cabezudo Bueno e Ildefonso Fernández Trujillo.
Os invitamos a su lectura, a que realicéis observaciones y comentarios al mismo y a que lo divulguéis a través de vuestras redes sociales y profesionales.
Hace unos días hemos dado por concluida la implementación de un módulo de búsqueda que venía siendo necesario para esta Web de Contenidos.
Desde las distintas secciones o categorías, Blog, Matemáticas, Física y Química, Otras áreas y Plantillas, se han ido publicando sin pausa, desde la aparición en los medios de RED Descartes, diferentes artículos y ya acumulamos un número importante, ¡sobrepasan los dos mil!
En esta situación es esencial disponer de un buscador que permita acceder a cualquiera de los artículos partiendo de determinados elementos que lo caractericen en función de su categoría, su contenido o su etiquetado. Esto es lo que pretende el Módulo de Búsqueda, para lo cual se han habilitado cinco elementos que actúan de filtro y se rotulan como Frase Clave, Título del artículo, Categoría, Etiqueta y Publicador.
Para mejor comprender la razón de ser de estos cinco elementos podemos decir que cada artículo publicado en la Web de Contenidos lleva, aparte de su contenido literario, metadatos como la fecha de publicación, escrito por (publicador), valoración (de 1 a 5 estrellas) de los lectores, categoría (sección) donde se publica y el etiquetado (conjunto de etiquetas que determinan un perfil para el artículo: temática, proyecto, materia, edad, nivel académico, lenguaje, etc.).
El Módulo de Búsqueda se encuentra en cada una de las secciones, Blog, Matemáticas, Física y Química, Otras áreas y Plantillas y puesto que cada sección se corresponde con una determinada categoría donde los artículos publicados quedan catalogados, el item correspondiente al elemento Categoría queda seleccionado automáticamente al acceder a una determinada sección, pudiendo no obstante desde aquí cambiar a voluntad a cualquier otra categoría.
El Módulo de Búsqueda incorpora un botón de Ayuda que caracteriza a cada uno de los elementos y detalla el formato que tiene el resultado de la búsqueda y las distintas formas como puede ser ordenado. No insistimos más por este lado en este artículo de presentación.

Esperamos haber acertado con esta herramienta y que realmente sea de utilidad a cualquier usuario de la Web de contenidos de RED Descartes.
El objeto dibujar funciones cuya gráfica es una línea recta que presentamos hoy pertenece al proyecto miscelánea de la RED y tiene como objetivo aprender a dibujar funciones reales de variable real cuya representación gráfica es una línea recta.
Los coeficientes de las funciones lineales se modifican aleatoriamente y para su representación se puede elegir dados dos puntos o dado un punto y la pendiente. Una vez seleccionada la función y los datos, se inicia una animación que muestra los pasos a seguir. Al finalizar la animación se puede seleccionar un nuevo ejercicio que se puede resolver en el cuaderno y después activar la animación para comprobar si se ha realizado correctamente.
En este vídeo se muestra también cómo embeber un objeto digital en un espacio web, en este caso un curso Moodle, utilizando el código para embeber:
<iframe style="width: 810px; height: 585px;" src="/descartescms/ https://proyectodescartes.org/miscelanea/materiales_didacticos/dibujar_funciones_con_grafica_una_recta-JS/index.html"></iframe>
Este mes vamos a ver un vídeo de 4º ESO académicas sobre las ecuaciones y sistemas:
En este vídeo hemos tratado los siguientes puntos:
1.Ecuaciones de segundo grado
Completas ax²+bx+c=0
Incompletas ax²+c=0, ax²+bx=0
Discriminante y soluciones
2.Otras ecuaciones
Bicuadradas
Racionales
Irracionales
Factorizadas
3.Sistemas de ecuaciones lineales
Solución de un sistema
Sistemas compatibles
Método de sustitución
Método de igualación
Método de reducción
4.Sistemas de segundo grado
Sistema ax+by=c xy=k
Sistema a0x²+b0y²=c0 a1x+b1y=c1
5.Aplicaciones prácticas
Resolución de problemas
En el Proyecto Plantillas hemos dispuesto una sección llamada Puzles, en la cual podemos encontrar puzles de arrastre, de intercambio, giratorios y por desplazamiento. La novedad en estos puzles con respecto a la herramienta de edición Puzles Descartes es el recortado automático de las piezas del puzle, es decir, el usuario sólo se tiene que preocupar por incluir la imagen que desee para el diseño de este tipo de actividad lúdica, evitando la edición de imágenes correspondientes a las piezas del puzle. No obstante esta ventaja, no podemos descartar la herramienta de edición, pues en los puzles tipo Jigsaw aún no tenemos el recortado automático.

Seguramente, algunos diseñadores de escenas quisieran conocer las técnicas utilizadas que, por la brevedad de este post, publicaremos en la sección de documentación de Descartes. Sin embargo, en forma reducida, lo que hemos hecho es aprovechar dos utilidades del editor de Descartes: el uso de capas y los espacios múltiples. El puzle de arrastre mostrado en la imagen anterior, está compuesto de 16 piezas cuadradas, las cuales se corresponden con 16 espacios de igual tamaño. El recortado de imágenes se logra copiando la misma imagen en cada espacio, pero en posiciones diferentes, por ejemplo, en la pieza de la esquina superior izquierda, copiamos la imagen, de tal forma que sólo muestre el 25% de la imagen base, para ello debemos definir la posición de la imagen en el espacio correspondiente. El uso de las capas nos ha permitido incluir controles gráficos invisibles y asociados a cada espacio, pero en una capa superior, de tal forma que al arrastrar el control gráfico se simula el arrastre de la pieza.
Pero, para el público en general estas explicaciones técnicas no son de interés, basta con saber cómo diseñamos nuestros puzles que, como lo dijimos antes sólo es necesario incluir la imagen que deseemos. La buena noticia es que podemos usar vídeos en lugar de imágenes, haciendo más atractivos nuestros puzles.
Presentamos, entonces, dos nuevos puzles que hemos denominado vídeo puzles, el primero de cuatro piezas y el segundo de seis.
Vídeo puzle de cuatro piezas (haz clic en la imagen para abrir el puzle)
Vídeo puzle de seis piezas (haz clic en la imagen para abrir el puzle)
Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Epicicloides" e "Hipocicloides" que son un tipo de Epi/Hipo Trocoides que a su vez son una clase de las Ruletas.
Dentro del amplio grupo de cicloides analizaremos los ll.gg. generados por un punto de una circunferencia, o dependiente de ella, cuando dicha circunferencia, a la que llamamos generatriz, gira sin deslizar, de forma tangencial, alrededor de otra circunferencia llamada directriz. Esto es, nuestro estudio se centra en uno de los tipos de las curvas planas cíclicas llamadas Ruletas.
Si la generatriz gira por el exterior de la directriz se genera una Epicicloide, que puede ser: ordinaria, epitrocoide acortada o epitrocoide alargada según la posición del punto generador respecto a la circunferencia generatriz de la que depende. Análogamente, si la generatriz gira por el interior de la directriz el l.g. generado es una hipocicloide que a su vez puede ser: ordinaria, hipotrocoide acortada o hipotrocoide alargada según veremos más adelante.
Para llevar a la práctica el estudio se han creado dos escenas: "epitrocoides.html" e "hipotrocoides.html" que se enlazan en la siguiente imagen que muestra como la utilidad "hipotrocoides.html" genera dos ll.gg. uno color rosa conocido como Deltoide (R/r=3) y el otro, de color azul, una hipotrocoide acortada. Esto es así porque se han considerado dos puntos generadores: uno en la circunferencia generatriz y otro, en este caso, interior a la misma. Ver detalles de la escena, dejando repetir la animación, o leer las instrucciones, hasta comprender el proceso de creación de los ll.gg.
Para profundizar en el estudio de los lugares geométricos y en el de uso del editor DescartesJS, hemos elaborado, de forma muy esquemática, las pequeñas utilidades mencionadas anteriormente. Son escenas basadas en la obra del profesor Ricardo Sarandeses Fernández, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS. A propósito del nuevo editor hemos utilizado, a modo de plantilla, los extraordinarios recursos que la documentación del mismo enlaza en la web de sus creadores. La cantidad de ejemplos-ejercicios ofrecidos hacen que el potencial didáctico y de reutilización de dicha documentación y los ejemplos que la acompañan sea digno de mención ya que con un mínimo esfuerzo, cualquiera de esos abundantes trabajos, puede ser adaptado y servir así de plantilla para un proyecto personal tal como muestran los anteriores y el siguiente enlace.

Introducción al concepto de probabilidad
En ambas escenas, de las dos relacionadas con los ll.gg., se ha puesto especial énfasis en el proceso de elaboración de las ecuaciones paramétricas del l.g. lo que se manifiesta al analizarlas. Por otra parte las dos utilidades pueden ser reducidas a una sola muy fácilmente, lo que dejamos como ejercicio.
Indicamos que:
Como en anteriores ocasiones notamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con los propósitos de ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.
La siguiente utilidad genera una amplia colección de epicicloides/epitrocoides según los valores que asignemos a los deslizadores. Conviene observar la animación para comprender la influencia que las asignaciones ejercen sobre los gráficos.

hoja de trabajo de las epicicloides
En la escena que enlaza la siguiente imagen se usa la ecuación de la curva para representarla una vez se conocen los valores que la definen.
Cuando el cociente R/r es un número natural la cicloide se completa en la primera vuelta de la generatriz, en cualquier otro caso es conveniente analizar el cociente anterior para preveer el comportamiento de la curva. La utilidad da un máximo de 10 vueltas, valor que puede modificarse para que se adapte dinámicamente a la situación y así hacer una aplicación más eficiente.
Al igual que en el caso de las epicicloides es conveniente analizar la animación.

hoja de trabajo de las hipocicloides
Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
En esta ocasión en la sección de vídeo hemos elegido de nuevo, debido a su indudable interés, dos de entre las muchas composiciones de Milton Donaire publicadas en YouTube.
La primera trata sobre el teorema de Menelao y la segunda sobre el teorema de Giovanni Ceva. El objetivo es el de apreciar la influencia directa, e indirecta, que el conocimiento del triángulo y de las razones geométricas tiene en el tema que nos ocupa: "Los Lugares Geométricos".
Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
¡Descartes cuenta con un nuevo editor de escenas!
Con la versión 1.0 de este editor, desarrollado con javascript, se inicia una nueva andadura que da continuidad al editor de Descartes en Java, y al proyecto Descartes, adaptándonos a las nuevas tendencias tecnológicas: compatibilidad HTML5, multidispositivo (ordenadores, tabletas y smaprtphones) y multisistema operativo.
Con este paso Descartes deja de usar Java tanto en la interpretación de las escenas, lo cual lleva haciéndolo desde el año 2013, como en la edición de las mismas. Durante un periodo de seis meses se ha mantenido en fase beta a este nuevo editor DescartesJS, en ese tiempo ha sido ampliamente probado por los socios de RED Descartes y se han ido subsanando los errores detectados.
El editor DescartesJS ha sido programado por Joel Espinosa Longi miembro del equipo dirigido por el Dr. José Luis Abreu León y su desarrollo ha sido patrocinado por el Instituto de Matemáticas de la Universidad Nacional Autónoma de México (UNAM), basándose en el editor de Descartes anterior.
Como se especifica en los créditos, la herramienta es software libre con licencia LGPLv3

Cuenta con una página específica desde la que se puede descargar la versión deseada según el sistema operativo: Windows, macOS o Linux (32 0 64 bits). La dirección es http://descartes.matem.unam.mx/.
DescartesJS incorpora una nueva interfaz, si bien la funcionalidad es similar a la del editor anterior, mantiene las características básicas de poder reproducirse en cualquier dispositivo y ser de uso libre y gratuito, e incluye nuevas posibilidades que incentivan la creatividad de los desarrolladores y potencian su carácter como herramienta multipropósito de aplicación a cualquier área de conocimiento científica y literaria.
Aunque la edición de escenas se efectúa en un entorno propio, ajeno al navegador que después elija el usuario para ver e interactuar con dichas escenas, la funcionalidad y el aspecto es exactamente el mismo al pasar de un contexto al otro pues en ambos casos se está utilizando el mismo intérprete de Descartes. Con el editor en Java había algunas diferencias como consecuencia de usarse dos intérpretes diferentes: el de edición en Java y el de interpretación en javascript, pero ahora es el mismo. Sí puede observarse alguna particularidad entre navegadores en aspectos muy específicos, pero eso es causado por el diferente nivel de compatibilidad HTML5 que tenga cada uno de ellos y no es debido a Descartes.
Descartes, como se indica en el logotipo actual de esta herramienta y como se indicaba en logotipo inicial, son "matemáticas interactivas" que cimentan y sustentan el desarrollo de recursos para compartir el saber y el saber hacer. Saber al estilo global clásico griego y saber compartido a nivel global gracias a las TIC y a Internet. Descartes es un medio que ayuda a conformar a sus usuarios como matemáticos, pero en su sentido etimológico (μαθηματικóς , mathematikós: amante del conocimiento).

En la página de descarga indicada también puede consultarse la documentación técnica en formato pdf. Ésta ha sido desarrollada por Alejandro Radillo Díaz, José Luis Abreu León y Joel Espinosa Longi.
La herramienta contempla compatibilidad hacia atrás, es decir, las escenas desarrolladas con el editor de Descartes en Java son editables por DescartesJS, pero hay que señalar que una vez una escena sean guardada con el editor DescartesJS, ésta no será ya editable con la versión del editor Java.
Con esta herramienta se incluye una nueva imagen identificadora, un nuevo logotipo basado en una familia de óvalos de Descartes.
Desde RED Descartes agradecemos públicamente el patrocinio del Instituto de Matemáticas de la UNAM mediante el que ha sido desarrollada esta herramienta. Agradecimiento que transmitimos también a José Luis Abreu como director de este desarrollo que actualiza y da continuidad a la labor que se inició en 1998 con la versión 1 de Descartes, a Joel Espinosa que ha realizado su programación y a Alejandro Radillo que ha abordado con los anteriores la actualización de la documentación a la nueva versión. ¡Muchas gracias a todos por vuestra dedicación y logro! y por aportar la base tecnológica que permite continuar catalizando la ilusión por innovar en la educación con y gracias a Descartes.
Nota bene 1: Este artículo sólo tiene como objetivo dar a conocer esta nueva herramienta y animar a todos los usuarios de RED Descartes a iniciarse en su aprendizaje, si son noveles en ella, o a profundizar, si son usuarios habituales. En futuros artículos iremos describiendo detalles de la misma y también las herramientas de geometría dinámica conGeo2D y conGeo3D desarrolladas con DescartesJS.
Nota bene 2: Cualquier comentario u observación sobre DescartesJS, sobre algún posible mal funcionamiento o error que detecte sera bien recibido con objeto de optimizar su funcionamiento. Puede comentarlo bien en este blog o bien puede escribirnos a la dirección de correo Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo..
En este vídeo presentamos una serie de actividades de introducción al azar y probabilidades pertenecientes al proyecto Canals de la RED para el ciclo superior de primaria y ESO. El proyecto Canals consta de objetos de aprendizaje basados en una selección de materiales elaborados por la reconocida profesora Maria Antònia Canals. El desarrollo de estos recursos con la herramienta Descartes añade interactividad y autocorrección a dichos materiales.
En concreto se han seleccionado las actividades:
Juego blanco y negro. La escena presenta un tablero en blanco y negro, un botón que simula el lanzamiento de la moneda y dos jugadores. A partir de la experimentación del juego, se puede prever la probabilidad de una opción u otra.
Juego de azar. El gato y el ratón. En esta actividad se presenta un circuito con distintas ramificaciones. Los ratones siguen aleatoriamente distintos caminos que les permiten llegar al gato o al queso. La escena dispone de un contador a partir del cual el alumnado puede calcular una primera aproximación de la probabilidad de cada uno de los sucesos.
Juego de azar y combinaciones. Se trata de una actividad que simula el lanzamiento de dos moneda y presenta una tabla de recogida de datos que permite analizar los resultados.
Excelente contribución a la educación global. Felicitaciones a los organizadores…
Escrito por Ageleo Justiniano Tucto
en %PM, %20 %503 %2023 %13:%Oct
Participantes de tres continentes en el curso para el diseño de libros interactivos
(Difusión)
Estimado Javier Arturo: Agradecemos su reconocimiento al programa de Educación…
Escrito por José Antonio Salgueiro González
en %PM, %22 %458 %2023 %12:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Me parece una gran iniciativa en favor de la educación,…
Escrito por JAVIER ARTURO MARTINEZ FARFAN
en %AM, %22 %189 %2023 %05:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Ildefonso era un hombre de edad y motivaciones educativas similares…
Escrito por José Luis San Emeterio
en %PM, %05 %805 %2023 %20:%Ago
Ildefonso Fernández Trujillo, in memoriam
(Difusión)
Yo conocí la fórmula más bella de las matematicas como…
Escrito por Pepin
en %PM, %17 %576 %2023 %14:%Jul
Cálculo diferencial e integral, módulo I
(iCartesiLibri Matemáticas)