La dimensión histórica, social y cultural de las matemáticas debe programarse de manera cuidada y coordinada para ayudar a la comprensión de los conceptos a través de la perspectiva histórica, así como para contrastar las situaciones sociales de otros tiempos y culturas con la realidad actual, conociendo de manera más humana a los personajes y sus aportaciones, visibilizando las circunstancias personales de mujeres matemáticas y las dificultades que han tenido para acceder a la educación y a la ciencia. Resulta idóneo el uso de Internet y de las herramientas educativas existentes, de vídeos y películas sobre la vida y obra de los personajes matemáticos para lo que es de gran ayuda la pizarra digital, o el tradicional trabajo monográfico que ahora puede crear nuestro alumnado de forma colaborativa haciendo uso de los documentos compartidos. También podemos ir más allá, pues resulta sumamente enriquecedor para la formación competencial crear de forma colaborativa una línea del tiempo con la secuenciación cronológica de descubrimientos matemáticos. Además, debemos enseñar a nuestro alumnado a generar contenido matemático inédito y desarrollar la comunicación audiovisual desde las matemáticas con la creación de un audio o vídeo o poniendo voz a los personajes célebres de ambos géneros, organizando una cadena de radio matemática o un canal de televisión que entreviste de forma ficticia a dichos personajes.
El párrafo anterior están literalmente extraídos de la Orden de 14 de julio de 2016, por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado, que es la que conozco como docente en activo, pero estoy convencido de que las orientaciones y estrategias metodológicas aportadas serán de gran similitud con las ofrecidas por otras comunidades autónomas en el ámbito de sus competencias.
ANTECEDENTES |
RED Descartes posee una gran experiencia, reconocida además, en la radio ficción en Matemáticas, gracias a su programa "El personaje misterioso" conducido por Eva Perdiguero y Ángel Cabezudo, con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Pues bien, "La radio ficción en el aula de Matemáticas" es un proyecto del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija con los mismos objetivos que los de Radio Descartes, pero entre discentes en vez de entre docentes, que empieza durante el curso escolar 2015/2016 con un grupo de alumnos de Matemáticas Orientadas a las Enseñanzas Académicas en 3º de ESO, es decir, con 14 y 15 años de edad, que se coordina desde el aula virtual y comprende las fases que se relacionan a continuación.
ELECCIÓN DEL PERSONAJE MATEMÁTICO Y DIFUSIÓN EN TWITTER |
Cada equipo estará constituido libremente por dos personas que deberán elegir a un personaje matemático para entrevistar en un programa de radio, masculino o femenino garantizando la paridad en el aula, de modo que una persona ejerza de entrevistador y la otra represente al personaje seleccionado. Seguidamente, para información de todos y no repetir personajes, un miembro del equipo publicará un tuit con la composición del mismo, incluyendo el personaje seleccionado con una imagen y el hashtag del curso #MATES3BAJO.
DOCUMENTACIÓN |
En la segunda fase, cada equipo realizará una búsqueda de información en internet sobre la vida y obra del personaje elegido para entrevistar.
Pueden ser documentos de texto, imágenes con información, presentaciones, infografías, vídeos, audios y cualquier multimedia, en general.
Es fundamental que la información provenga de fuentes fiables, así que se hará una selección de dos o tres recursos y se compartirán en el foro habilitado en el aula virtual las direcciones de cada uno de ellos.
Después, cuando el profesor aprueba los recursos seleccionados, se tendrán que difundir esas direcciones por Twitter con el hashtag del curso #MATES3BAJO.
ELABORACIÓN DEL GUION |
Cada equipo tiene que elaborar un guion en un documento de texto con la entrevista completa y enviarla al profesor desde la tarea habilitada en el aula virtual, cuidando la expresión, el vocabulario y la escritura.
INSTRUCCIONES PARA LA GRABACIÓN DE LA ENTREVISTA |
¡Ha llegado el momento! Recuerda que son fundamentales la creatividad e imaginación del equipo, así que, si no tienes experiencia anterior a la hora de protagonizar un programa de radio, te daré algunos consejos:
La mejor forma de conocer el producto final deseado es oir algunas entrevistas similares.
Encontrarás una docena de entrevistas a personajes matemáticos que te servirán de orientación, sin olvidar que están realizadas por docentes para docentes, mientras que las vuestras son de alumnos para alumnos, y se recomienda que no sobrepasen los cinco minutos de duración.
EDICIÓN DEL AUDIO |
Una vez grabada la entrevista, te aconsejo hacer una copia de la misma y guardarla en una carpeta llamada copia de seguridad, para evitar posibles problemas, ya que ahora procede editar los distintos archivos para proceder a enriquecer el audio con las uniones correspondientes, incluyendo la presentación, despedida, sintonía del programa de radio, efectos sonoros, etc, para lo que es fundamental la creatividad e imaginación del equipo.
En ningún momento podrás incluir música o sonidos que tengan derechos de autor, es decir, copyright, debiendo usar recursos originales o que tengan licencias que lo permitan, como las Creative Commons. Así que, para ello, te recomiendo que uses el
Descárgate los archivos que sean de tu agrado en formato mp3, preferiblemente.
Abrimos en el aula virtual un foro denominado "Soporte técnico" para que, entre todos, planteemos las dificultades que encontremos y poder compartir soluciones conforme vayamos aprendiendo.
ENTREGA DEL AUDIO |
Una vez finalizada la edición del audio con los efectos especiales y el equipo considere concluída la entrevista, deberá generar con el software empleado un archivo en formato mp3 para entregarlo desde la tarea habilitada en la plataforma, o bien usar un conversor para pasar su archivo al formato solicitado.
Pues bien, en el marco del proyecto "La radio ficción en el aula de Matemáticas", compartimos en este segundo artículo la entrevista realizada por una alumna y un alumno de 3º ESO a Euclides, conocido como "El Padre de la Geometría".
Felicito a Ángela y Alejandro por su creatividad, imaginación y transmisión de emociones para dar a conocer la vida y obra del autor de los Elementos.
Son varios los grandes matemáticos que han conseguido, por uno u otro camino, la cuadratura del círculo. Hemos analizado, en este blog, algunas de las formas en que dicha cuadratura se ha logrado, fundamentalmente las relacionadas con lugares geométricos que de una u otra manera consiguen determinar un segmento relacionado con el número π.
Dentro de la particularidad que nos ocupa: la cuadratura del círculo, también hemos podido apreciar el indudable valor de algunos de los procedimientos mecánicos (técnicos) que diferentes artistas, arquitectos y científicos interesados en el tema han elaborado. En este sentido enlazamos a continuación con el interesante trabajo del profesor Carlos Calvimontes Rojas sobre la cuadratura del círculo donde muestra una selecta documentación relacionada con el tema y basada en la desarrollada por Leonardo Da Vinci y Vitrubio, con la verificación de la aportación gráfica de la misma con el programa de diseño arquitectónico Autocad.
Recomendamos la lectura completa del documento así como el análisis de su bibliografía.
Volvemos a enlazar con el blog de Miguel Ángel Morales Medina, en esta ocasión lo hacemos al artículo sobre la cuadratriz.
A continuación exponemos varias escenas interactivas elaboradas con DescartesJS y el programa GeoGebra que muestran la cuadratura del círculo utilizando los lugares geométricos aportados por Hípias (Dinostrato) y Arquímedes.
A continuación exponemos las mismas escenas anteriores pero en esta ocasión elaboradas con el programa GeoGebra. Las escenas son especialmente sencillas por si se desean tomar como referencia para ampliar con contenido propio.
En primer lugar se muestra la cuadratura del círculo con la cuadratriz de Dinostrato y a continuación la cuadratura del círculo con la espiral de Arquímedes.
cuadratura del círculo (Dinostrato)
cuadratura del círculo (Arquímedes)
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la deducción, paso a paso, de la generación del lugar geométrico Trisectriz - Cuadratriz de Hípias - Dinostrato.
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con las cuadraturas estudiadas para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos. Cuadraturas"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2018
Materiales publicados en DVD.
ISSN: 2444-9180 Dep. Legal: CO-2079-2015
Vol. III, enero de 2018 | ||||
![]() |
![]() |
|||
Vol. III - Núm. 1 (3,62 GB) | Vol. III - Núm. 2 (3,63 GB) | |||
Incluye todos los materiales desarrollados o actualizados durante 2017 organizados por subproyectos. |
Incluye los materiales actualizados del subproyecto "Aplicaciones de juegos didácticos en el aula". | |||
|
Nota: La imagen que ha servido de base para la portada y galleta de los DVDs ha sido tomada desde commons.wikimedia.org
Durante los días 3 y 4 de noviembre de 2017 se celebraron, en el aulario de la Universidad Pública de Navarra, las V Jornadas de Enseñanza de las Matemáticas en Navarra, organizadas conjuntamente por la Sociedad Navarra de Profesores de Matemáticas "TORNAMIRA", el CAP de Pamplona y la UPNA, con el objetivo de lograr un lugar de encuentro para docentes desde la etapa de educación infantil hasta la universitaria, constituir un foro de comunicación de trabajos, experiencias e inquietudes del profesorado de matemáticas en la Comunidad Foral de Navarra, así como un elemento más que contribuya a transmitir y a hacer visible la cultura matemática en la sociedad navarra.
La RED Descartes estuvo representada por Rita Jiménez Igea, profesora de matemáticas en el IES Tomás Mingot de Logroño, quien presentó el taller titulado "¿A qué jugamos hoy en clase de Mates?", un REA (Recurso Educativo Abierto) con sugerencias didácticas para usar en el aula escenas de Descartes que contienen un juego o pasatiempo y trabajar conceptos y contenidos del currículo de Matemáticas, principalmente de secundaria, aunque también aplicables en primaria. Todas las escenas permiten jugar y/o simular el juego tantas veces como se desee, pertenecen al Proyecto Descartes y están publicadas en el enlace superior.
Podemos encontrar escenas interactivas que son un juego y al usarlas se están trabajando los contenidos, escenas a partir de las cuales se sugiere cómo crear puzzles que permiten a los alumnos trabajar algunos conceptos, escenas que recrean un juego conocido y al plantear preguntas podemos descubrir las matemáticas que contiene ese juego y usarlas para ganar, etc...
Debemos tratar de encontrar y llevar al aula materiales y recursos que estimulen al alumno. Las Tics, los pasatiempos, los juegos, los materiales manipulativos son buenas opciones que hacen que salgamos de la monotonía de la pizarra, el cuaderno y los ejercicios de lápiz y papel. Este recurso pretende dar ideas y sugerencias de cómo llevar al aula estas escenas y juegos. No es un trabajo completo y cerrado. Es una primera vía de trabajo porque seguro que cada profesor conseguirá enfoques nuevos, plantear otro tipo de preguntas y utilizar estas escenas de otra forma.
Para generar el REA se ha utilizado eXeLearning (software libre) que permite incluir actividades interactivas tipo rellenar huecos, actividades tipo test, de verdadero o falso, etc. con autocorrección y/o retroalimentación, además permite incrustar páginas web, escenas de Descartes o Geogebra, applets de Java, imágenes , videos etc…
También podemos encontrar este Recurso Educativo Abierto compartido en el espacio Procomún.
Finalmente, compartimos en nuestro portal la presentación y el texto íntegro de la comunicación presentada por Rita Jiménez Igea.
1. Buscar y elegir el juego que se desee.
Elige un juego del menú "Selecciona un juego", situado en la esquina superior izquierda de la web del proyecto. Al pulsar se mostrará una descripción del juego. (También se puede usar los buscadores de la web, especialmente el de juegos).
Para entrar en el juego pulsa el botón rojo, "ACCEDER AL JUEGO" que aparece en la descripción del mismo.
3. Seleccionar la modalidad de introducción de preguntas el juego.
Éstas pueden introducirse de forma escrita, oral o no contener preguntas. (Si el juego sólo presenta una modalidad este paso se omite).
4. Elegir la configuración o parámetros iniciales del juego.
Introduce los nombres de los jugadores, opciones específicas y generales del juego, carga de ficheros de preguntas para juegos con esta modalidad, etc.
5. Pulsar en el botón JUGAR.
6. Comenzar la partida.
Esta semana vamos a ver algunas unidades del Proyecto Canals con actividades de introducción al cálculo. Pertenecen al Proyecto Canals una serie de materiales interactivos que han sido diseñados a partir de los materiales que ha ido elaborando y compilando la professora Maria Antònia Canals durante su extenso periodo docente.
En el siguiente vídeo y a modo de ejemplo se han seleccionado tres actividades de sumas y restas y se muestran también los pasos a seguir para insertar dichas actividades en un curso de Moodle.
Las actividades seleccionadas son: