La dimensión histórica, social y cultural de las matemáticas debe programarse de manera cuidada y coordinada para ayudar a la comprensión de los conceptos a través de la perspectiva histórica, así como para contrastar las situaciones sociales de otros tiempos y culturas con la realidad actual, conociendo de manera más humana a los personajes y sus aportaciones, visibilizando las circunstancias personales de mujeres matemáticas y las dificultades que han tenido para acceder a la educación y a la ciencia. Resulta idóneo el uso de Internet y de las herramientas educativas existentes, de vídeos y películas sobre la vida y obra de los personajes matemáticos para lo que es de gran ayuda la pizarra digital, o el tradicional trabajo monográfico que ahora puede crear nuestro alumnado de forma colaborativa haciendo uso de los documentos compartidos. También podemos ir más allá, pues resulta sumamente enriquecedor para la formación competencial crear de forma colaborativa una línea del tiempo con la secuenciación cronológica de descubrimientos matemáticos. Además, debemos enseñar a nuestro alumnado a generar contenido matemático inédito y desarrollar la comunicación audiovisual desde las matemáticas con la creación de un audio o vídeo o poniendo voz a los personajes célebres de ambos géneros, organizando una cadena de radio matemática o un canal de televisión que entreviste de forma ficticia a dichos personajes.
El párrafo anterior están literalmente extraídos de la Orden de 14 de julio de 2016, por la que se desarrolla el currículo correspondiente a la Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado, que es la que conozco como docente en activo, pero estoy convencido de que las orientaciones y estrategias metodológicas aportadas serán de gran similitud con las ofrecidas por otras comunidades autónomas en el ámbito de sus competencias.
ANTECEDENTES |
RED Descartes posee una gran experiencia, reconocida además, en la radio ficción en Matemáticas, gracias a su programa "El personaje misterioso" conducido por Eva Perdiguero y Ángel Cabezudo, con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Pues bien, "La radio ficción en el aula de Matemáticas" es un proyecto del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija con los mismos objetivos que los de Radio Descartes, pero entre discentes en vez de entre docentes, que empieza durante el curso escolar 2015/2016, continuando en el curso escolar 2017/2018, con un grupo de alumnos y alumnas de Matemáticas Orientadas a las Enseñanzas Académicas en 3º de ESO, es decir, con 14 y 15 años de edad, que se coordina desde el aula virtual y comprende las fases que se relacionan a continuación.
ELECCIÓN DEL PERSONAJE MATEMÁTICO Y DIFUSIÓN EN TWITTER |
Cada equipo estará constituido libremente por dos personas que deberán elegir a un personaje matemático para entrevistar en un programa de radio, masculino o femenino garantizando la paridad en el aula, de modo que una persona ejerza de entrevistador y la otra represente al personaje seleccionado. Seguidamente, para información de todos y no repetir personajes, un miembro del equipo publicará un tuit con la composición del mismo, incluyendo el personaje seleccionado con una imagen y el hashtag del curso #MATES3BAJO.
DOCUMENTACIÓN |
En la segunda fase, cada equipo realizará una búsqueda de información en internet sobre la vida y obra del personaje elegido para entrevistar.
Pueden ser documentos de texto, imágenes con información, presentaciones, infografías, vídeos, audios y cualquier multimedia, en general.
Es fundamental que la información provenga de fuentes fiables, así que se hará una selección de dos o tres recursos y se compartirán en el foro habilitado en el aula virtual las direcciones de cada uno de ellos.
Después, cuando el profesor aprueba los recursos seleccionados, se tendrán que difundir esas direcciones por Twitter con el hashtag del curso #MATES3BAJO.
ELABORACIÓN DEL GUION |
Cada equipo tiene que elaborar un guion en un documento de texto con la entrevista completa y enviarla al profesor desde la tarea habilitada en el aula virtual, cuidando la expresión, el vocabulario y la escritura.
INSTRUCCIONES PARA LA GRABACIÓN DE LA ENTREVISTA |
¡Ha llegado el momento! Recuerda que son fundamentales la creatividad e imaginación del equipo, así que, si no tienes experiencia anterior a la hora de protagonizar un programa de radio, te daré algunos consejos:
La mejor forma de conocer el producto final deseado es oir algunas entrevistas similares.
Encontrarás una docena de entrevistas a personajes matemáticos que te servirán de orientación, sin olvidar que están realizadas por docentes para docentes, mientras que las vuestras son de alumnos para alumnos, y se recomienda que no sobrepasen los cinco minutos de duración.
EDICIÓN DEL AUDIO |
Una vez grabada la entrevista, te aconsejo hacer una copia de la misma y guardarla en una carpeta llamada copia de seguridad, para evitar posibles problemas, ya que ahora procede editar los distintos archivos para proceder a enriquecer el audio con las uniones correspondientes, incluyendo la presentación, despedida, sintonía del programa de radio, efectos sonoros, etc, para lo que es fundamental la creatividad e imaginación del equipo.
En ningún momento podrás incluir música o sonidos que tengan derechos de autor, es decir, copyright, debiendo usar recursos originales o que tengan licencias que lo permitan, como las Creative Commons. Así que, para ello, te recomiendo que uses el
Descárgate los archivos que sean de tu agrado en formato mp3, preferiblemente.
Abrimos en el aula virtual un foro denominado "Soporte técnico" para que, entre todos, planteemos las dificultades que encontremos y poder compartir soluciones conforme vayamos aprendiendo.
ENTREGA DEL AUDIO |
Una vez finalizada la edición del audio con los efectos especiales y el equipo considere concluída la entrevista, deberá generar con el software empleado un archivo en formato mp3 para entregarlo desde la tarea habilitada en la plataforma, o bien usar un conversor para pasar su archivo al formato solicitado.
Pues bien, en el marco del proyecto "La radio ficción en el aula de Matemáticas", compartimos en este primer artículo del curso escolar 2017/2018 la entrevista realizada por dos alumnos de 3º ESO al gran matemático francés Évariste Galois.
Felicito a Pablo García y Pablo Gutiérrez por su creatividad, imaginación y transmisión de emociones para interpretar y divulgar la vida y obra de Galois, a quien conocían gracias al canal Derivando de Eduardo Sáenz de Cabezón.
ANÁLISIS DE LA EXPERIENCIA |
Con la entrevista al personaje matemático has adquirido, quizás sin darte cuenta, una importante experiencia en comunicación verbal, relacionada con las Matemáticas, que antes no poseías. Estoy convencido de que si tuvieras que grabarlo otra vez no saldría el mismo, porque cambiarías alguna cosa en base a esa experiencia o le darías otro enfoque o incluso usarías otras herramientas.
Has sido pionero y pionera en este aspecto, por ello, tu experiencia debe ser aprovechada para los que te sigan. ¿Y cómo se hace ésto? Pues sencillamente como hacen los científicos, divulgando tus experiencias y conclusiones en las revistas especializadas y en los medios de comunicación del s. XXI.
¿Qué tienes que hacer? Pues sencillamente grabar otro audio, con total libertad, es decir, tú decides sin incluyes o no efectos especiales y música, pero no es necesario, sino que lo importante es oir tu experiencia con absoluta sinceridad, hablando y vocalizando lo mejor posible.
¿Qué temas hay que tratar?
Hay que contar todos los detalles, desde la planificación, redacción del guion, grabación del audio , lugar elegido, recursos usados, osbtáculos que habéis encontrado y cómo los habéis resuelto y vuestras conclusiones finales. Por ejemplo, a modo de guión:
Esta semana proponemos un nuevo enfoque sobre el uso de los materiales del proyecto Descartes.
Como la mayoría de unidades pertenecientes a los diferentes proyectos de la Red Descartes contienen actividades para practicar con autocorrección de los ejercicios, serán útiles para trabajar también en verano ya sea para consolidar contenidos trabajados durante el curso o bien como refuerzo sobre algunos temas que ofrecieron más dificultad y que es necesario recuperar.
El alumno puede realizar las actividades que necesite ya sea individualmente, con algún compañero o con la ayuda de un tutor.
A modo de ejemplo vamos a ver en el siguiente vídeo algunas de las actividades propuestas en la unidad expresiones algebraicas del proyecto ED@D para primero de la ESO.
Este mes vamos a ver un vídeo de 3º ESO Académicas sobre los cuerpos geométricos:
La unidad trata los siguientes epígrafes:
1.Poliedros regulares
Definiciones
Desarrollos
Planos de simetría
Poliedros duales
2.Otros poliedros
Prismas
Pirámides
Planos de simetría
Poliedros semirregulares
3.Cuerpos de revolución
Cilindros
Conos
Esferas
Planos de simetría
4.La esfera terrestre
Coordenadas geográficas
Husos horarios
5.Mapas
Proyecciones
Nuestros niños y niñas se encuentran disfrutando del período vacacional de verano, con mucho tiempo para compartir con sus familias y amigos, así como para el descanso y ocio. No obstante, siempre es recomendable encontrar el momento adecuado para sugerirles una interesante lectura y realizar, en nuestra compañía o junto a sus hermanos y hermanas mayores, algunas actividades de las áreas básicas del conocimiento. Ahora bien, para ello, las familias requieren de una orientación y asesoramiento que pueden recibir por diferentes canales de comunicación.
Con este fin, la Red Educativa Digital Descartes, ofrece una amplia selección de recursos digitales interactivos a los que pueden accederse desde cualquier lugar y hora, en el campo o en la playa, con un simple ordenador personal, portátil, tableta o smartphone y conexión a la red de internet, aunque también es posible descargarse el objeto de aprendizaje para usarlo en local, es decir, sin conexión a internet.
Estos recursos están organizados y catalogados por etapa educativa y edad, como se aprecia en la imagen inferior, así , las familias podrán seleccionar, con un simple clic sobre la imagen correspondiente o sobre el texto que la acompaña a su derecha, los adecuados para sus hijos e hijas, encontrando la relación con los nombres de las actividades y una breve descripción de la misma.
No obstante lo anterior, cada familia, como mejor conocedora de las capacidades de los niños y niñas, podrá optar por realizar las actividades de diferente edad.
La LOMCE no contempla los tres ciclos de Primaria, sino seis cursos independientes. lo que no supone obstáculo alguno para que los niños y niñas disfruten con estos recursos de gran calidad, pues accediendo al ciclo en cuestión, según la edad, y seleccionando el recurso deseado puede verse con detalle a qué curso concreto corresponde.
Esperamos que esta aportación, completamente gratuita, de la RED Descartes sea de utilidad para el mayor número posible de familias y animamos a dejar comentarios con sus opiniones.
El mapeado de la imagen se ha realizado desde la nube con la herramienta Image-Maps.
En los diferentes subproyectos que conforman la organización no gubernamental RED Descartes hay profusión de contenidos relativos a la Estadística y la Probabilidad que prácticamente cubren las exigencias curriculares de Primaria, ESO y Bachillerato. La particularidad de estos contenidos es que son: dinámicos, interactivos, formativos y en algunos casos, además, evaluativos. Ya en la anterior entrada en este blog señalamos algunos de esos recursos y siguiendo en esa línea y teniendo en cuenta que nuestro objetivo es el análisis de los errores de tipo I y II en los contrastes (tests) de hipótesis hemos seleccionado los siguientes contenidos:
También enlazamos la excelente unidad didáctica, dinámica e interactiva, creada con DescartesJS por la profesora Mª José García Cebrian (2001) y revisada y adaptada por ella misma (2017) INFERENCIA ESTADÍSTICA
Desde la generalización del uso del astrágalo (taba) para dilucidar todo tipo de cuestiones relacionadas con la incertidumbre o sencillamente como elemento lúdico para ejercitar la habilidad mezclada con la suerte, la Geometría y el Azar comenzaron a ir de la mano. De hecho el gráfico de los cuerpos platónicos que mostramos en la cabecera de esta entrada es probablemente una de las mejores definiciones de equiprobabilidad que podamos ver. El hecho tangible de manipular cualquiera de estos cuerpos transmite una sensación de equilibrio, perfección y equidad, amén de otras, difícilmente igualable.
Los motivos por los que, primero el conde de Buffon y más tarde Pierre-Simón Laplace, conde del Imperio, atendieron este problema no están claros. El efecto inmediato si, a partir de entonces la utilidad del uso de la Geometría en cuestiones de probabilidad estaba comprobada así como el uso de métodos estadísticos y probabilísticos para aproximar valores de constantes geométricas.
Con el objetivo de rememorar el establecimiento formal de la relación entre la Estadística-Probabilidad con la Geometría y también por la idoneidad del experimento con la introducción al estudio de la Inferencia Estadística que estamos desarrollando se ha elaborado la miscelánea "Experimento: La Aguja de Buffon". En esta miscelánea se recrea dicho experimento con las siguientes particularidades:
Experimento de Buffon. Lanzamiento de agujas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra una clase sobre la estimación de la media poblacional mediante intervalos de confianza. Este vídeo es uno de los enlazados en el libro digital interactivo "Estadística, Probabilidad e Inferencia".
Acerca de los cuerpos platónicos.
Ildefonso Fernández Trujillo. 2018