La descomposición de un cubo en pirámides de base triangular surge de manera natural, y fácil, una vez que se han analizado las particiones de un cubo en pirámides de base cuadrada. Basta considerar una de las dos diagonales de dicha base cuadrada para que la pirámide quede partida en dos triangulares. Así pues, toda pirámide cuadrada puede subdividirse de dos formas diferentes en pirámides triangulares, sendas pirámides para sendas diagonales. No obstante, veremos que este procedimiento no conduce a la partición de cardinal mínimo, siendo necesario abordar un planteamiento constructivo independiente para lograrla. Este nuevo esquema nos conducirá a particiones que catalogaremos como no prismáticas o primásticas. Estas últimas serán objeto de un análisis específico en un tercer artículo relativo a este tema.
Particiones de un cubo en pirámides de base triangular
1. Partición mediante descomposición de pirámides de base cuadrada
Si consideramos las diferentes particiones del cubo en pirámides cuadradas obtenidas en el artículo anterior entonces, automáticamente, son conocidas sendas particiones en pirámides triangulares sin más que considerar cada una de las dos diagonales del cuadrado que constituye la base en cada pirámide. Además, las dos subpirámides obtenidas serán equivalentes (con igual volumen), pues la base inicial cuadrada ha quedado dividida en dos partes iguales y la altura es común a ambas y, por tanto, el volumen de cada una de esas pirámides triangulares es la mitad del volumen inicial. En este contexto tendríamos las siguientes situaciones:
Escena 1. Partición prismática del cubo en seis pirámides triangulares congruentes
(Haz clic en la imagen para acceder al recurso interactivo)
Este proceso de división podría repetirse considerando la mediana de las nuevas bases y así obtendríamos una partición con doce pirámides equivalentes y dos familias de 6 pirámides congruentes entres sí; y con una nueva fracción por la mediana serían 24 pirámides equivalentes y 4 familias congruentes y, en general 3·2n pirámides equivalentes y 2n-1 familias de pirámides congruentes entre sí. Un entretenimiento teórico bonito, pero que físicamente su traslación a un contexto manipulativo rápidamente no es viable.
Escena 2. Partición no prismática del cubo en seis pirámides triangulares equivalentes
En la siguiente escena se aborda de manera general la partición del cubo en pirámides triangulares a partir de las particiones del mismo en pirámides cuadradas:
Escena 3. Partición del cubo en pirámides triangulares por división de pirámides cuadradas. Caso general.
Todas las situaciones anteriores son, o pueden considerarse, interesantes y conducentes a puzles de cierta dificultad tanto en los casos en los que se busca la máxima congruencia o regularidad, como en la posición contraria. Pero ninguna de ellas conduce a la partición con cardinal mínimo, pues el planteamiento realizado viene condicionado por la partición previa en pirámides de base cuadrada. La partición mínima, como veremos en la próxima sección, se corresponde con cinco pirámides y salvo isometrías hay una única posibilidad para su construcción. Por ello, nuestro centro de interés se focalizará en la antes citada descomposición prismática del cubo en seis pirámides triangulares equivalentes, que sin ser el caso único de cardinal mínimo sí que genera una variedad de situaciones que nos proponemos cuantificar y detallar.
2. Partición mediante construcción específica
En esta sección partiendo de un cubo de vértices {A, B, C, D, E, F, G, H}, nos planteamos realizar una partición del mismo en pirámides triangulares buscando, por un lado, que la descomposición tenga cardinal mínimo y, por otro, buscando alternativas en las que sin ser de cardinal minimo se encuentren congruencias o equivalencias.
Dado que las pirámides triangulares son poliedros convexos con cuatro caras triangulares (es decir tetraedros) y cuatro vértices, en la planificación de esta partición han de tenerse en consideración las siguientes observaciones:
Escena 4. Una posible elección de los elementos primarios para realizar la partición
Escena 5. Pirámide triangular determinada por dos segmentos con distinta dirección no coplanarios
Escena 6. División del cubo en cinco prismas triangulares
Escena 7. Diagonales coplanarias
Escena 8. División del cubo en dos prismas triangulares
Así pues, nuestro análisis nos conduce a plantearnos la partición del cubo a través de la descomposición de un prisma triangular en pirámides triangulares. Éste puede ser un buen tema para detallar en un próximo artículo, y ello es mi propósito, confiando en que habrá colegas interesados en seguir comprobando como algo que parece tan simple, la descomposición de un cubo, no lo es tanto y aporta mucho juego, interés, conocimiento y belleza matemática. Por aquí ¡os espero pronto!
Este mes vamos a ver la unidad de "Sistemas de ecuaciones" de 4ºESO Aplicadas:
De forma muy breve hemos tratado los siguientes temas:
1.Sistemas de ecuaciones lineales
Ecuación lineal con dos incógnitas
Sistemas de ecuaciones lineales
Clasificación de sistemas
2.Métodos de resolución
Reducción
Sustitución
Igualación
3.Aplicaciones prácticas
Resolución de problemas
4.Sistemas de inecuaciones con una
incógnita
Resolución
El subproyecto Misceláneas está de enhorabuena, que se recuerde, pocas veces, en tan poco tiempo, un grupo tan reducido de personas ha aportado tanta cantidad de objetos de tan elevada calidad y tan alto potencial educativo a cualquiera de los subproyectos de la Red Descartes. Y no es la intención desmerecer al resto, muy al contrario; si no la de dar merecida notificación de un hito tan memorable. La excepcionalidad se justifica a si misma nada más visualizar cualesquiera de las últimas escenas incorporadas al subproyecto, lo que ya ha sido posible gracias a las reseñas que tanto José R. Galo Sánchez como Ángel Cabezudo Bueno han expuesto recientemente en el apartado Últimos materiales del blog y al artículo que el primero de ellos acaba de publicar, también en este blog, donde justifica el proceso de creación, creando a su vez nuevas escenas relacionadas con el tema de proporcionar una ayuda inestimable a la capacidad de visualización de las transformaciones dinámicas en el espacio tridimensional. Por otro lado la buena salud del subproyecto también se debe a la infatigable tarea de adaptación de materiales obsoletos, al nuevo editor DescartesJS, de las profesoras Elena E. Álvarez Sáiz y María José García Cebrian, los profesores ya mencionados y otros/as que aunque no se indican están en la mente de todos los usuarios del portal. Relativo a las aportaciones más recientes caben destacar:
De las que destacamos:
Matemáticas, joyería y mezclas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra una presentación de los cuerpos platónicos diferente a lo habitual.
Ildefonso Fernández Trujillo. 2018
El estudio y búsqueda de regularidades o propiedades en cualquier objeto puede abordarse desde diferentes perspectivas. Una de ellas es proceder a la disección o descomposición buscando desentrañar el interior o lo particular para comprender el exterior o la globalidad. La máxima aristotélica de que el todo es más que la suma de sus partes no queda contradicha por acudir al hecho de realizar una partición —matemáticamente descomponer un conjunto como unión de subconjuntos cuyas intersecciones tienen medida nula—, sino que metodológica o procedimentalmente es un medio humanamente asequible con el que dar un primer paso a través del cual buscar y tratar de abarcar, en un posterior análisis global, ese todo a partir de sus partes. En esta línea, en este artículo, mostraremos con recursos interactivos algunas particiones usuales de un cubo en pirámides con base cuadrada y comprobaremos como todos esos casos son situaciones particulares de una partición general basada en nueve puntos (los vértices del cubo y un adicional).
El motivo para elegir una determinada partición de la infinidad de particiones posibles y hacerla distinguible del resto puede sustentarse en diversos criterios u objetivos, pero usualmente suelen marcarse pautas como que la partición tenga el menor número de elementos o que sea lo más regular posible, es decir, que las partes sean iguales o congruentes —que coincidan mediante una composición de isometrías (traslaciones, giros o simetrías)— o equivalentes —con igual medida— o cualquier otro parámetro que sea atractivo para quien busque adentrarse en este contexto. Pero la elección también podría estar marcada por criterios opuestos o diferentes a los anteriores. Si pensamos en que la reconstrucción del cubo a partir de las piezas de una partición es un entretenimiento usual, catalogado como rompecabezas o puzle, el diseñador del mismo puede perseguir que todas las piezas sean iguales o plantarse en la situación opuesta de que todas sean diferentes. La dificultad o sencillez, la mayor o menor belleza del modelo obtenido tiene más componente subjetivo que objetivo; pero la belleza matemática siempre estará implícita en todos y cada unos de los planteamientos realizados, al ser medios y soportes conducentes a la extracción y obtención del conocimiento.
En este artículo analizaremos la partición de un cubo en pirámides de base cuadrada y en un artículo posterior nos adentraremos en la partición en pirámides de base triangular (tetraedros aunque no necesariamente regulares).
Particiones de un cubo en pirámides de base cuadrada
Posicionándonos y atendiendo al criterio de que la partición tenga cardinal mínimo o que sea lo menor posible y adicionalmente que sus componentes sean regulares o que sean lo más similares entre sí, podemos encontrar cuatro situaciones, que son las que usualmente se muestran y divulgan, y que reflejaremos en sendos recursos interactivos. En ellos se conjugará la virtualidad digital con la posibilidad de contruir el modelo respectivo de forma tangible, a lo que animamos e invitamos a todos.
1. Tres pirámides cuadradas iguales.
Este caso se corresponde con la partición con cardinal mínimo. Las tres pirámides comparten la misma cúspide y son iguales. Esta partición suele tomarse como base para mostrar que el volumen de una piramide es la tercera parte del área de su base por su altura, pero no nos adentraremos en ese objetivo.
Haz clic en la imagen para acceder al recurso interactivo
2. Cuatro pirámides cuadradas iguales dos a dos.
Esta partición se caracteriza porque las cuatro pirámides también comparten la misma cúspide y son iguales dos a dos.
Haz clic en la imagen para acceder al recurso interactivo
3. Cinco pirámides cuadradas, cuatro iguales y una desigual que es regular.
Aquí las cinco pirámides vuelven a tener la misma cúspide.
Haz clic en la imagen para acceder al recurso interactivo
4. Seis pirámides cuadradas regulares e iguales.
Todas las pirámides comparten la misma cúspide y todas son regulares e iguales (congruentes).
Haz clic en la imagen para acceder al recurso interactivo
Todos los casos anteriores son los ejemplos que usualmente se suelen mostrar en múltiples contextos por su simplicidad y belleza. Pero, como hemos indicado, la belleza también puede alcanzarse a través de un análisis global en el que los casos anteriores no sean más que un caso particular de una situación general, y donde la diversidad y la diferencia sean la pauta a lograr. En ese empeño, a continuación, mostraremos de manera razonada y constructiva cómo abordar una partición del cubo en pirámides de base cuadrada, y adicionalmente se podrá observar digital y analógicamente apoyándonos en un nuevo recurso interactivo.
Generalización de la partición del cubo en pirámides cuadradas
Para construir una partición del cubo en pirámides cuadradas es necesario, obligatorio, utilizar los ocho vértices del cubo y las doce aristas del mismo, y adicionalmente hay que seleccionar o marcar cuál o cuáles serán las cúspides de las pirámides a construir. La introducción de puntos adicionales a los vértices hará que aumente el número de combinaciones de cinco puntos que pueden realizarse y consecuentemente podrá incrementarse el número de pirámides de la partición (no todas las combinaciones posibles de vértices son viables para obtener una partición del cubo). Así pues, analicemos diferentes alternativas:
En el siguiente objeto interactivo puede experimentarse y verse todo lo indicado.
Haz clic en la imagen para acceder al recurso interactivo
En un próximo artículo nos adentraremos en la partición de un cubo en pirámides triangulares.
Hoy presentamos la unidad Operaciones con números racionales, perteneciente al proyecto Miscelánea de la RED.
Se trata de un objeto didáctico interactivo con una serie de actividades para practicar las operaciones con números racionales. Las actividades de esta unidad son adecuadas para los primeros cursos de la ESO y facilitan el aprendizaje y consolidación de dichos cálculos ya que en cada ejercicio el alumno puede comprobar si su respuesta es correcta o no y seguir así la evolución de su aprendizaje.
El siguiente vídeo consta de dos partes, en primer lugar se analizan las actividades que forman parte de dicha unidad y, en segundo lugar, se propone la inserción de este objeto en un curso Moodle para el trabajo en el aula, mediante el código para embeber.