En este artículo presentamos dos unidades del proyecto Misceláneas con ejercicios de porcentajes e intereses.
Misceláneas es un subproyecto de la Red Educativa Digital Descartes que contiene unidades independientes que tratan diferentes aspectos del currículo de matemáticas y que se pueden utilizar como complemento al estudio de distintos conceptos matemáticos. En este caso hemos seleccionado las unidades: Descuentos y recargos simples y porcentajes encadenados y BANCOS. Interés simple y compuesto.
Estas dos escenas interactivas son un recurso útil para el profesorado ya que en ellas se proponen múltiples ejercicios con autocorrección para practicar porcentajes y, por sus características, adecuados a todos los niveles de secundaria, ya sea de ampliación en los primeros cursos o bien de consolidación y refuerzo en cursos superiores.
En el siguiente vídeo se muestra con detalle la tipología de los ejercicios propuestos en estas escenas. También se propone un ejemplo de aplicación en un curso Moodle sobre el tema de proporcionalidad para segundo de la ESO. En primer lugar se ha insertado la unidad temática proporcionalidad del proyecto ed@d y como complemento se han añadido las dos unidades de porcentajes e intereses. De la misma forma, para completar el tema, se podrían incorporar en el aula virtual otras actividades y tareas sobre proporcionalidad.
El "triángulo de Pascal o de Tartaglia" es ampliamente conocido tanto por las curiosas propiedades que en él pueden encontrarse como por su aplicación en el desarrollo algebraico de la potencia de un binomio. Suele aprenderse ligado a lo que usualmente se enseña con el nombre de "binomio de Newton" y que se identifica con la potencia de un binomio cuyo exponente es un número natural. Pero quien enunció o al menos divulgó este desarrollo particular, relacionándolo con ese triángulo, fue Pascal y de ahí que se denomine a dicho triángulo con su nombre. No obstante, el "triángulo de Pascal" ya era conocido, siglos antes, por matemáticos persas y chinos. Según Maor (1994) la aportación concreta de Newton en el contexto del desarrollo binomial se sitúa en el caso del desarrollo con exponentes racionales y con exponentes enteros y únicamente llegó a conjeturarla sin llegar a abordar o al menos divulgar su demostración. Actualmente este resultado es un caso particular del denominado "Teorema binomial".
Newton abordó la extensión del triángulo de Pascal efectuando un cálculo hacia atrás, de manera que se mantuviera la misma propiedad recursiva de que un elemento de una fila sea el resultado de la suma de dos de la fila anterior siguiendo la propiedad que se verifica entre los números combinatorios.
Con esta extensión recursiva en sentido inverso, Newton construye nuevas filas, cada una de las cuales tiene infinitos números y cuya escritura conduce a la forma de un "paralelogramo" (o si se desea puede mostrarse, en particular, como un rectángulo) y cada una de ellas puede asociarse a filas que se corresponderían con números "combinatorios" cuyo índice superior serían números enteros negativos.
A su vez, Newton hace corresponder los números ubicados en cada fila con los coeficientes del desarrollo de la potencia de un binomio cuyo exponente ya no sólo sería un número natural, sino que en general puede ser un número entero. Y, consecuentemente, a todos los números del paralelogramo de Newton los denominaremos coeficientes binomiales (pierde sentido asociarlo con el número de combinaciones). El desarrollo del binomio conduce a un número finito de sumandos cuando el exponente es natural e infinitos (una serie) cuando es un entero negativo.
En la miscelánea "Extensión del triángulo de Pascal: El paralelogramo de Newton" se muestran los coeficientes binomiales de dicho paralelogramo. Pulsando el botón "indicaciones" de este recurso se pueden consultar algunos detalles adicionales.
Pulsa sobre la imagen para abrir la escena
La representación de dicho paralelogramo numérico entraña dos dificultades principales a medida que se incrementa la cantidad de números a visualizar. Por un lado, el espacio que necesita ocupar la escritura de cada coeficiente binomial que progresiva y rápidamente va aumentando, al ser mayor el número de cifras que lo constituyen. Y, por otro, el tiempo de cálculo necesario para ubicar, desplazar y representar en la tabla dichos coeficientes y para poder escalarla (si se desea). Adicionalmente, el cálculo de los coeficientes conduce a números enteros que superan el número designado como MAX_SAFE_INTEGER y que en javascript es 253-1 (algo superior a 9 mil billones); así pues, en esos casos no se refleja el coeficiente y se colorea la casilla donde iría ubicada con un fondo rojizo.
En dicha escena se pueden visualizar, mediante colores, pautas geométricas de cómo se distribuyen dichos coeficientes cuando se plantean congruencias numéricas respecto a un divisor y resto seleccionado. No obstante, estas distribuciones pueden observarse mejor si no se muestran los valores de los coeficientes y ello es lo que se aborda en la miscelánea: "Congruencias en el paralelogramo de Newton"
Pulsa sobre la imagen para abrir la escena
En este caso (ver las indicaciones incluidas en la miscelánea) la dificultades siguen centrándose en el espacio necesario para representar el paralelogramo cuando el número de filas y columnas considerado es elevado, pero al no reflejarse el número en sí, cada uno de estos coeficientes ocupa el mismo espacio y puede escalarse hasta el extremo de que ocupe un único píxel. Por otro lado, el cálculo de las congruencias puede hacerse de manera recursiva sin necesidad de calcular el coeficiente y consecuentemente no se ve afectado por lo indicado sobre el máximo entero admisible en javascript. Obviamente, las necesidades computacionales son elevadas y, por defecto, en la escena se ha limitado el número de filas y columnas a 400, pero editando la escena puede cambiarse.
Para evitar que cada interesado tenga que dedicar tiempo en la generación de las imágenes de las congruencias, he preparado un muestrario de consulta para las congruencias con los números primos hasta el treinta y uno, representando los coeficientes binomiales de índice superior en el rango desde -999 a 999 y de índice inferior de 0 a 999. Éste está accesible en la miscelánea: "Muestrario de congruencias en el paralelogramo de Newton", pudiéndose ampliar las imágenes ahí incluidas.
Pulsa sobre la imagen para abrir la escena
En un próximo artículo en este blog, mostraré que si retomamos el esquema organizativo original que Pascal (Traité du triangle arithmétique, 1665) utilizó al presentar y analizar las propiedades de este triángulo numérico, entonces los patrones de las congruencias que se observan en él son mas fáciles de identificar y pautar, y la extensión de estos a los coeficientes binomiales con índice superior un entero negativo se realiza de manera trivial.
Finalmente, quienes deseen aplicar los coeficientes binomiales y practicar con el desarrollo algebraico de potencias de un binomio pueden usar las siguientes misceláneas:
Ejercicios de desarrollo algebraico usando el "Binomio de Newton"
Pulsa sobre la imagen para abrir la escena
Ejercicios del "binomio de Newton" con exponente entero
Pulsa sobre la imagen para abrir la escena
Durante la primera semana de marzo de 2020, entre los días 2 y 6, se celebra la Open Education Week, un evento comunitario global que busca crear conciencia sobre los beneficios de los recursos educativos abiertos y las prácticas educativas abiertas.
El Congreso Mundial sobre los Recursos Educativos Abiertos (REA), celebrado en París del 20 al 22 de junio de 2012, resalta que el término REA "designa a materiales de enseñanza, aprendizaje e investigación en cualquier soporte, digital o de otro tipo, que sean de dominio público o que hayan sido publicados con una licencia abierta que permita el acceso gratuito a esos materiales, así como su uso, adaptación y redistribución por otros sin ninguna restricción o con restricciones limitadas". Una definición cuyos requisitos cumplen escrupulosamente los recursos interactivos generados con la herramienta de autor Descartes JS y compartidos con la aldea global en el portal de la ong RED Descartes. Por ello, y dado que la Semana de la Educación Abierta se ha convertido en uno de los eventos mundiales más destacados que reconoce el alto rendimiento y la excelencia en la educación abierta, desde Proyecto Descartes, con una larga trayectoria en este ámbito, hemos decidido colaborar y participar en la #OEWeek con varios de nuestros conocidos proyectos:
"¿Por qué es importante la Educación Abierta?
La gente quiere aprender. Al proporcionar acceso gratuito y abierto a la educación y al conocimiento, la educación abierta ayuda a crear un mundo para apoyar el aprendizaje. Los estudiantes pueden obtener información adicional, puntos de vista y materiales para ayudarlos a tener éxito. Los trabajadores pueden aprender cosas que los ayudarán en el trabajo. La facultad puede recurrir a recursos de todo el mundo. Los investigadores pueden compartir datos y desarrollar nuevas redes. Los maestros pueden encontrar nuevas formas de ayudar a los estudiantes a aprender.
Las personas pueden conectarse con otras personas que de otra manera no se encontrarían para compartir ideas e información. Los materiales se pueden traducir, mezclar, dividir y compartir abiertamente de nuevo, lo que aumenta el acceso e invita a nuevos enfoques. Cualquiera puede acceder a materiales educativos, artículos académicos y comunidades de aprendizaje de apoyo en cualquier momento que lo deseen. La educación está disponible, accesible, modificable y gratuita".
(El párrafo anterior ha sido extraído literalmente de la web de la Open Education Week)
El subproyecto Competencias de la Red Educativa Digital Descartes contiene una serie de objetos de aprendizaje interactivos cuyo objetivo es la formación y evaluación competencial. PISA 2017 es un grupo de recursos dentro de este subproyecto que han sido creados a partir de las pruebas liberadas PISA.
Las pruebas de evaluación diagnóstica del programa PISA se basan en una evaluación no basada en contenidos curriculares sino en las competencias del alumnado presentando contextos y situaciones presentes en la realidad cotidiana.
En la Red Descartes se han adaptado algunas de estas pruebas introduciendo dinamismo e interactividad. Las unidades pueden ser reutilizadas por un mismo alumno, cada vez que se accede a una misma unidad aparecen datos y respuestas alternativas. Al finalizar las actividades de una unidad el estudiante puede revisar sus respuestas y ver las correcciones, lo que las convierte en una excelente herramienta para el autoaprendizaje y consolidación de contenidos.
Para el estudio e interpretación de gráficos se han seleccionado las siguientes unidades:
En el siguiente vídeo se presentan estos objetos de aprendizaje y se muestra un ejemplo de inserción en un curso moodle.
La rotación de Rodrigues es un procedimiento analítico matricial, fácil y cómodo que permite rotar, un ángulo θ, un vector v tridimensional alrededor de otro vector unitario k = (kx, ky, kz). La expresión matricial de este giro es la siguiente:
Su deducción puede realizarse mediante planteamientos vectoriales geométricos como se aborda en este artículo o bien apoyándose en el trabajo con cuaterniones. Este trabajo de Rodrigues ha quedado algo relegado y opacado por los ángulos de Euler o más directamente por los parámetros de Euler mediante los que se obtiene la fórmula de Euler-Rodrigues que no es más que una parametrización especial de la fórmula de Rodrigues reflejada anteriormente.
En este artículo se busca mostrar la aplicación de esta rotación de Rodrigues visualizando gráficamente su efecto y, en particular, usando la rotación dar respuesta al problema de obtener el desarrollo plano de las caras que determinan un ángulo poliedro. Esto último lo utilizaremos, a modo de ejemplo, para mostrar el desarrollo plano animado de un icosaedro, así como el de cualquier cilindro generalizado.
En la siguiente escena interactiva se tiene acceso a siete opciones de menú que detallamos a continuación.
Pulsa sobre la imagen para abrir la escena
Pulsa sobre la imagen para ampliarla
Pulsa sobre la imagen para ampliarla
Pulsa sobre la imagen para ampliarla
Pulsa sobre la imagen para ampliarla
Otra muestra de aplicación de la rotación de Rodrigues es la obtención automática del desarrollo plano de un cilindro generalizado ya que éste puede plantearse como el desarrollo plano de un prisma que se ajuste suficientemente al cilindro dado. En la animación siguiente se plantea el desarrollo plano de un cilindro generalizado en el que su base es la curva denominada bifolium.
Pulsa sobre la imagen para ampliarla
Este ejemplo y algunos más puede consultarse en la miscelánea "Ejemplos de cilindros generalizados" y también cada cual puede construir el cilindro generalizado que desee, obtener su respectivo desarrollo plano y construirlo físicamente con la miscelánea "Construyo mis cilindros".