En el proceso de enseñanza y aprendizaje de las Matemáticas, incluso en edades avanzadas, es aconsejable el uso de materiales manipulativos para que el alumnado aprenda haciendo, construyendo y “tocando las matemáticas”. Ahora bien, todos conocemos las dificultades añadidas para organizar y planificar sesiones de aula con grupos numerosos empleando herramientas poco frecuentes, así como el tiempo necesario para diseñar o localizar los recursos que faciliten su desarrollo. Pues bien, este articulo tiene por objeto difundir la experiencia realizada con mi alumnado y, a la vez, compartir los recursos para hacer más llevadera la labor planificadora docente.
Se trata de una actividad ideal para realizar en el aula, para lo que será suficiente con 2 ó 3 sesiones, una vez conocidos los conceptos de figuras semejantes, razón de semejanza y la relación entre sus áreas y volúmenes, obteniendo como producto final una maqueta de las Torres KIO de 9'1 cm de altura, aproximadamente, que podrán manipular, conocer todas sus vistas, hallar el factor de escala y calcular el área de la base y el área lateral de las torres Puerta de Europa y sus volúmenes reales.
Comparto con todos los compañeros, compañeras, amigos y amigas el vídeo de la primera experiencia, desarrollada con un grupo de 2º curso del desaparecido Programa de Cualificación Profesional Inicial, hoy Formación Profesional Básica, con quien tuve la fortuna de trabajar y aprender todo lo que son capaces de conseguir y ofrecer. Una experiencia que he repetido en el curso académico recientemente finalizado con un grupo de alumnos y alumnas de 4º ESO.
Aunque podemos calificar de ingente la cantidad de recursos ofrecidos desde la RED Descartes, posiblemente sea el tratado en este artículo uno de los más desconocidos, por lo que pasaremos a comentar cómo pueden encontrarse y enlazar a los mismos para su descarga o visualización.
Finalmente, después del desarrollo de toda la experiencia, dedicamos un tiempo a visionar y reflexionar sobre la grandiosidad de este proyecto denominado Puerta de Europa y la importancia de la ciencia, tecnología, ingeniería y matemáticas, conocida por las siglas STEM, gracias al vídeo que os recomiendo.
Esta semana vamos a ver el contenido de 3ºESO de ecuaciones de segundo grado
el índice seguido ha sido el siguiente:
1.Expresiones algebraicas
Identidad y ecuación
Solución de una ecuación
2.Ecuaciones de primer grado
Definición
Método de resolución
Resolución de problemas
3.Ecuaciones de segundo grado
Definición. Tipos
Resolución de ax²+bx=0
Resolución de ax²+c=0
Resolución de ax²+bx+c=0
Suma y producto de las raíces
Discriminante de una ecuación
Ecuación (x-a)·(x-b)=0
Resolución de problemas
Afortunadamente continúan las innovaciones en las posibilidades operativas y de uso de los materiales y Escenas de la Red Descartes. Aconsejamos acudir a los foros y contenidos de la Documentación técnica de la herramienta de autoría DescartesJS para intentar estar al día de las mismas, fundamentalmente a estos, que llevan a la información sobre cómo comunicar las escenas con el HTML y viceversa, y las escenas entre si y a estos otros que ilustran la manera de integrar el cálculo simbólico en las escenas.
También queremos animar a colaborar con los compañeros que están trabajando en el proyecto ed@d en moodle. El material que se está elaborando puede suponer una mejora extraordinaria en la labor educativa con un aumento significativo en la cantidad y calidad de la información expuesta y en la comunicación alumno-alumno, profesor-alumno y viceversa.
En este artículo nos vamos a centrar en la creación de una miscelánea que con el título Las Espirales va a contener una serie de escenas donde se introducirá, estudiará y representará alguna de las siguientes espirales:
Cada elemento de la lista anterior enlaza con una página que puede contener o enlazar a: la definición, la ecuación en polares, las ecuaciones paramétricas, la gráfica y otras características de cada espiral, por lo que la miscelánea que vamos a elaborar estará enfocada a mostrar el proceso de planificación y realización de dicha miscelánea teniendo en cuenta que los objetivos didácticos de cara al alumnado son: las aplicaciones de la proporcionalidad y el potencial de uso de las funciones trigonométricas elementales, logarítmicas y exponenciales.
Aprovecharemos este artículo, los siguientes y la miscelánea que elaboraremos, para la presentación de la espiral Cordobesa, particularización de las espirales gnomónicas y fruto de un largo y laborioso trabajo colaborativo, aún vigente, que nuestro compañero, Ángel Cabezudo Bueno, ha concretado, provisionalmente, con éxito.
No debe olvidarse que estamos estudiando una de las aplicaciones del concepto de Proporcionalidad siguiendo algunos de los materiales que están disponibles en el Proyecto Descartes y, eventualmente, algún otro contenido que por su indudable interés lo merezca.
Al escenario donde va a desarrollarse la acción (E1) le hemos asignado unas dimensiones de 800x612 y dentro de este espacio general definiremos tres espacios rectangulares según muestra la siguiente imagen.
Los espacios Ei1 y Ei2 son, fundamentalmente, informativos aunque, eventualmente, pueden alojar algún elemento interactivo como un botón o un campo de texto. En el espacio Ep es donde se desarrollarán las acciones principales de la primera escena que está dedicada a la espiral Aritmética (de Arquímedes) y al grupo de espirales uniformes de 2, 3,...,n centros.
Comenzaremos trabajando de una forma peculiar, crearemos un solo espacio, el Ep, de dimensiones: 533x410 (conviene observar que 533 y 410 son, aproximadamente, el 67% de 800 y de 612 respectivamente) desarrollaremos todas las acciones de la primera escena que tienen lugar en este espacio con sus interrelaciones y, una vez finalizado este proceso, añadiremos los espacios Ei1 y Ei2, los dotaremos de contenido, y sincronizaremos la acción.
La base teórica de todo el trabajo para esta primera escena va a ser la observación de Arquímedes que originó la espiral que lleva su nombre:"Imaginaos una línea que gira con velocidad constante alrededor de un extremo, manteniéndose siempre en un mismo plano, y un punto que se mueve a lo largo de la línea con velocidad lineal constante: ese punto describirá una espiral"
Creamos el espacio Ep de 533x410 y en él vamos a representar lo descrito en la definición de tres maneras diferentes con objeto de practicar con las funciones seno y coseno y el concepto de proporcionalidad.
Consideramos las dos opciones posibles de giro del segmento y algunas de las composiciones que seguramente son conocidas por todos pues son de uso habitual.
También, en esta primera escena, vamos a mostrar la construcción de las espirales uniformes de dos y tres centros lo que unido a las explicaciones informativas que se incluirán en su momento bastará para aprender a construir una espiral uniforme de cualquier número de centros. Esto hace que para mantener el carácter didáctico del código convenga añadir un nuevo espacio, que superpuesto al anterior se hará visible cuando el primero esté oculto.
Para conseguir lo expuesto necesitaremos definir algunos controles de distinto tipo, algún vector, varias funciones, diversos algoritmos de cálculo y bastantes gráficos.
Vamos a mostrar lo que queremos conseguir y luego veremos, paso a paso como lo hemos realizado.
El siguiente vídeo muestra como se ha realizado la escena anterior.
En próximas entradas continuaremos con el paso a paso de la escena, analizando el subproyecto Misceláneas, y las nuevas posibilidades que el código ofrece.
Respecto al trabajo de investigación sobre las espirales gnomónicas en general y sobre la Cordobesa, en particular, que se está desarrollando, queremos mostrar los siguientes avances y animar a aportar alguna ayuda en el proceso de generalización emprendido.
La siguiente escena muestra el avance realizado respecto a las iniciales.Espirales. Proceso de generalización
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Debido a que, afortunadamente, continúan las innovaciones en las posibilidades operativas y de uso de los materiales y Escenas de la ReDescartes aconsejamos acudir a los contenidos de la Documentación técnica de la herramienta de autoría DescartesJS para intentar estar al día de las mismas, fundamentalmente a estos, que llevan a la información sobre cómo comunicar las escenas con el HTML y viceversa, y las escenas entre sí, a estos otros que ilustran la manera de integrar el cálculo simbólico en las escenas, quedando pendientes los enlaces a algunos de los contenidos de las siguientes novedades:
este último ya disponible y algunos de los anteriores llevan la documentación incluida o ya están parcialmente disponibles en los foros de la ReDescartes.
En esta ocasión, tal como indica el título, vamos a hacer un recorrido por el concepto de Proporcionalidad siguiendo algunos de los materiales que están disponibles en el Proyecto Descartes y, eventualmente, enlazaremos algún otro contenido por su indudable interés.
El objetivo de incluir el uso y análisis de Unidades Cartesianas sobre la Proporcionalidad es, además del evidente relacionado con el tema, el de aprender a generar una, o varias Misceláneas a partir de dichas unidades o simplemente, a extraer escenas aisladas para un uso ágil y puntual como ejemplo de apoyo a un aspecto concreto de uso o aplicación del concepto en estudio.
El siguiente vídeo muestra la manera de realizar esta acción y de hacer operativo el objeto derivado de la Unidad o Miscelánra.
Antes de continuar conviene observar la manera en que la profesora Antolina Muñoz Huertas enfoca el tema de la Proporcionalidad en la unidad que publicó en el año 2002 y que he adaptado a DescartesJS debido a la importancia del concepto y a la claridad y sencillez con que se expone. Y también porque de esta Unidad, tal y como más tarde haremos con otros trabajos del profesor José R. Galo Sánchez, vamos a extraer escenas para su posible uso de forma individual.
Una escena tratada aisladamente puede cubrir varios objetivos; unos relacionados con un concepto, por ejemplo la proporcionalidad, otros con una aplicación del concepto p.e. el número de oro y otros con el uso del código que hace comportarse a la escena de la forma que lo hace.
En todos los casos al ser un objeto simple es facil abordar su estudio desde cualquier punto de vista.
El número de oro.
La escena sacada tal cual de la Unidad anterior muestra, de forma dinámica e intuitiva, como dividir un segmento en partes que verifiquen la proporción Divina. Cierto que podemos añadir muchos aspectos que la mejoren hasta convertirla en una excelente Miscelánea, pero en esta ocasión queremos que permanezca tal cual está en origen para así comprender las explicaciones que se dan en el vídeo incluido en este artículo.
A continuación se enlaza una Miscelánea que complementa la Unidad anterior, pues introduce la proporción Humana o Cordobesa y que ha sido creada con objetivos fundamentalmente formativos.
Las dos escenas siguientes están sacadas de la excelente Unidad creada por José R. Galo y la tercera es una escena simple que, en su día, se creó para practicar con el Teorema de Pitágoras y con las funciones Trigonométricas: seno, coseno, tangente, arcotangente...
Rectángulo cordobés I
Rectángulo cordobés II
Espiral por puntos.
En esta otra escena, de utilidad si nos planteamos el tema de la proporcionalidad de manera algo más avanzada, tenemos una herramienta que puede ayudar a la confección de espirales logarítmicas, arquimedianas, uniformes de doble centro... y con muy pocas modificaciones de cualquier otro tipo.
Espiral logarítmica
Estando a punto de cerrar este artículo nos llega la noticia de que el profesor Ángel Cabezudo Bueno ha culminado un laborioso trabajo colaborativo y ha dado forma a la Espiral Cordobesa. Aunque dedicaré el próximo artículo a este logro a continuación expongo una escena, aún provisional, con la construción, mediante gnomones, de la espiral.
Espiral cordobesa mediante gnomones
En próximas entradas continuaremos analizando el subproyecto Misceláneas, y las nuevas posibilidades que el código ofrece.
La siguiente escena es el ejemplo desarrollado de la implementación del cálculo simbólico dentro de escenas DescartesJS. Realizado por Elena E. Álvarez Sáiz, es un completo estudio que la autora ha realizado de la situación, ampliando los comandos utilizados a más de 400 y detallando la manera de proceder en una amplísima documentación parte de la cual se enlaza al principio del artículo.
De este impresionante avance se ha dicho, entre otras cosas, lo siguiente:
¡Felicitaciones Elena!
Antes de despedir este artículo quisiera hacer mención al impresionante trabajo que hace ya algún tiempo presentaron Deyanira Monroy y José Luis Abreu con el nombre de ConGeo para darlo a conocer a aquellos que aún no lo usan y enviarle a sus autores la petición de incluir en descartes-min.js algunos de los comandos como: Punto Medio, Mediatriz, Bisectriz,... cosa que algún creador de escenas agradecería.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Dentro del curso "Aplicación de juegos didácticos en el aula" que se desarrolló en la 2ª convocatoria de formación de profesorado a nivel regional de la CEJA propusimos a los participantes que compartiesen sus impresiones como forma de mostrar las posibilidades que se abren con el uso de los juegos.
Mª Josefa Chaves Ruiz profesora de 1º de primaria en el CEIP Los Ángeles de Málaga se ha prestado a que publiquemos la experiencia de utilizar los juegos por primera vez con sus alumnos.
El que sean pequeños varía la forma de enfocar la actividad dando más peso al trabajo del docente en el desarrollo de la actividad pero compensa con creces.
Vamos con lo importante, lo que más les gustó a los alumnos:
Ver su nombre en el juego
La puntuación
En el juego de duelo de bombas, cómo estallan las bombas cuando fallan
Actuar de público
Vemos que aunque sean cosas muy simples resultan muy motivadoras
La valoración de Mª Josefa también ha sido muy positiva:
Los objetivos planteados se han conseguido de forma adecuada. El aprendizaje de los contenidos y las competencias básicas ha sido satisfactoria,
La participación ha sido la adecuada, si bien todos querían participar. La convivencia ha sido buena, han respetado el turno del equipo que actuaba, mientras los que no actuaban hacían de público.
También puede parecer un problema trabajar con toda una clase sin tener una sala de ordenadores a tu disposición, siempre podemos encontrar la forma de desarrollar la tarea:
La actividad se ha llevado a cabo durante una hora con 18 alumnos divididos en dos grupos, se han hecho dos equipos de 4 o 5 alumnos que competían entre sí y el resto hacía de público respetando a los que jugaban, después los que hicieron de público fueron los concursantes.
También se han utilizado los juegos con otro pequeño grupo utilizando un portátil, menos medios pero más participación por parte de los alumnos.
Los resultados han sido muy positivos, se han quedado con ganas de volver a jugar, lo que les sirve de incentivo y motivación.
Además, un consejo:
La puesta en práctica hay que prepararla con tiempo para que cuando los alumnos vayan a jugar esté todo preparado y no falle nada.
No podemos terminar de mejor forma que con un último comentario de Mª Josefa:
"A mis alumnos desde luego les ha gustado bastante y siempre que vamos a la pizarra digital quieren jugar con estos juegos, por lo que me veo en la obligación de preparar más preguntas para juegos diferentes. Los encuentro muy motivadores, todos quieren participar."
Solo nos queda agradecer a Mª Josefa su participación en el curso y su colaboración en la difusión de los juegos.
Os animamos a seguir compartiendo vuestras experiencias.
Debido a las recientes innovaciones en las posibilidades operativas de las Escenas aconsejamos estudiar los contenidos de la Documentación técnica de la herramienta de autoría DescartesJS, fundamentalmente estos, que llevan a la información sobre cómo comunicar las escenas con el HTML y viceversa, y las escenas entre sí.
Continuando con la práctica, recordamos que ya hemos definido en los espacios: E1, E2 y E3, algunos de los gráficos (textos) y controles necesarios para dirigir y complementar el flujo de la actividad, y también hemos definido los algorítmos y la animación que controlan la reproducción del vídeo. Ahora, siguiendo con el paso 10 y aunque ya se indicó que podía hacerse en el paso 6, crearemos los mensajes que serán visibles según la respuesta sea correcta; o no, tal y como muestra el siguiente vídeo.
Ya podemos abrir el archivo index.html creado con cualquier navegador para ver la escena funcionando de la forma prevista.
En próximas entradas continuaremos analizando el subproyecto Misceláneas, y las nuevas posibilidades que el código ofrece.
La siguiente escena es un ejemplo de la implementación del cálculo simbólico dentro de escenas DescartesJS. Este ejemplo, realizado por Elena E. Álvarez Sáiz, es una propuesta para evaluación de la viabilidad de la utilidad que aún está en fase de prueba (Al enviar este artículo nos llega el completo estudio que la autora ha realizado de la situación, ampliando los comandos utilizados a más de 400 y detallando la manera de proceder en una amplísima documentación, situación que recogeremos en próximos artículos).
De este impresionante logro se ha dicho lo siguiente:
"Continuamos con los avances basados en la comunicación escena-html y adelantamos una escena desarrollada por Elena Álvarez en la que, utilizando esa comunicación, se integra el cálculo simbólico (en este caso el CAS de Geogebra) en Descartes. La documentación explicando todo el proceso en detalle, estará pronto. Éste es sólo un ejemplo de lo que se puede hacer. ¡Muchísimas gracias Elena por compartir tu creatividad y tu buen saber y hacer! y por abrir una nueva línea de posibilidades.
Lo importante es que, en general, se puede integrar cualquier módulo CAS que esté en js o que disponga de un API. O una librería de cálculo numérico, o con bases de datos, o... ¡imaginación al poder! Al comunicarse Descartes con el exterior se ha abierto un amplio mundo de interacciones.
El esquema es siempre igual: un html que incluye todo lo relativo al módulo que se quiere integrar (bien sea un vídeo como en los vídeos interactivos, o un CAS como es en este caso, o una librería de cálculo numérico, o una base de datos o...) y una escena que envía a ese html una petición, éste actúa y envía la respuesta a la escena. También hay que tener presente conseguir el objetivo de que el módulo html no haya que tocarlo para nada, que sea una caja negra o interface ajeno al desarrollador que quiere usarlo.
La línea anterior coincide conceptualmente con otra que están desarrollando nuestros colegas en México, donde se están elaborando módulos (teclado, herramientas geométricas, tiza --tipo PDI--) donde se utiliza la comunicación escena con escena. Pronto os presentaremos estas utilidades.
Espero que os guste e incentive vuestra creatividad. ¡Ánimo y a preparar nuevos modelos! ¡Quedamos a la espera de vuestros ejemplos! (José R. Galo)"
"Sencillamente genial :-) ( Josep Mª Navarro Canut )"
"¡Felicitaciones Elena!
Has hecho realidad un viejo sueño de incorporar la potencialidad de GeoGebra a Descartes. Se despejan nuevos horizontes para el diseño de nuevas y más impactantes escenas de Descartes. (Juan Rivera )"
"Me alegra muchísimo esta gran noticia es como unir dos compuestos químicos esenciales. Fantástico! Y además se abren muchas e interesantes posibilidades para poner a prueba la creatividad...
Enhorabuena y gracias por el esfuerzo, es lo mínimo que podemos ofrecer los que estamos sin colaborar de una forma tan activa, enriquecedora y generosa. ( Luis Javier Rodríguez González)"
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo