buscar Buscar en RED Descartes    

Valora este artículo
(17 votos)

En este artículo se describen y clasifican las superficies regladas desarrollables poniendo de manifiesto que éstas son cilindros, conos y superficies tangenciales. Y, mediante el uso de Descartes, se permite al usuario abordar la construcción virtual de "su" cilindro y cono personalizado, pero también se le da la posibilidad de convertirlo en un objeto tridimensional tangible sin más que proceder a la obtención automática de su desarrollo plano y, mediante su impresión en papel, proceder a su construcción. 

Superficies regladas desarrollables

Una superficie es reglada si está constituida por una familia de rectas. Todas estas superficies se pueden parametrizar como:

sp1                  (1)

donde cu y du son curvas en el espacio tridimensional. La primera es la curva base o curva directriz y la segunda es el vector director de cada una de las rectas (generatriz). Efectivamente, fijado un valor del parámetro u puede observarse que la expresión obtenida es la ecuacion de una recta y, variando  u, geométricamente lo que se puede interpretar es que se va recorriendo cada punto de la curva base cu y por él pasa una recta cuya dirección viene dada por du.

También puede expresarse de manera equivalente como:

sp2           (2)

que algebraicamente representa, para cada valor de u, a una recta (o un segmento si consideramos 0 ≤ ≤ 1), pero en este caso lo que se pone de manifiesto es que esa recta se apoya en un punto de la curva c1u y en otro de la c2u.

El ejemplo más simple de superficie reglada es un plano, pero entre otras, también lo son los cilindros, los  conos, la banda de Moebius, el hiperboloide, etc.

cilindrogeneralizado conogeneralizado
 Cilindro generalizado  Cono generalizado
 MobiusStrip-01  Ruled hyperboloid
 Banda de Möbius  Hiperboloide

 

Una herramienta matemática que permite caracterizar la curvatura de cualquier superficie regular es la denominada curvatura de Gauss, y se verifica que dicha curvatura es invariante por isometrías. Todas las superficies regladas cumplen que su curvatura de Gauss es menor o igual que cero y, en particular, que la curvatura de Gauss de un plano es identicamente nula. En base a lo anterior, todas las superficies regladas que tienen curvatura cero son isométricas con el plano y son denominadas como  superficies desarrollables ya que, consecuentemente, pueden construirse a partir de su desarrollo plano.

En la parametrización (1) la condición de curvatura nula equivale a que el denominado parámetro de distribución sea nulo, y éste viene dado por:

pdistribucion     (3)

o en el caso de la parametrización (2) como:

pdistribucion2        (4)

De (4) se observa que para que la superficie reglada sea desarrollable tiene que ocurrir que para todo el vector tangente a la curva c1u, el vector tangente a c2u y el vector director de la recta que une a ambas curvas sean coplanarios al ser el producto mixto de los tres cero, o dicho de otra forma que el plano tangente es constante  lo largo de cada recta generatriz.

Pero un análisis más detenido de cuándo es identicamente nulo el parámetro de distribución nos puede permitir clasificar a las superficies desarrollables. Así en la expresión (3):

    1. Si dp es identicamente nulo, entonces du es un vector constante, es decir que todas las rectas tienen la misma dirección y la superficie es un cilindro generalizado de ecuación ecilindro.
    2. Si  cp es idénticamente nulo, entonces cu es el vector de posición de un punto y la superficie desarrollable es un cono generalizado de vértice V, cuya ecuación sería econo. También puede expresarse en función de una curva base como rcono.
    3.  En cualquier otro caso se demuestra que es una superficie tangencial, que mediante un cambio de parámetro se puede expresar como estangencial.

Superficies desarrollables con Descartes

En el proyecto "El metro: patrón inexacto para medir exactamente", que en el año 2004 contó con una ayuda de la Junta de Andalucía (España) para la elaboración de materiales y recursos educativos digitales, desarrollamos con Descartes en su versión Java algunos objetos educativos interactivos sobre conos y cilindros generalizados incluyendo la posibilidad de obtener su desarrollo plano. En este año 2020 hemos procedido a adaptarlos a DescartesJS y a mejorar sus posibilidades, en particular en lo relativo a forma de obtener ese desarrollo plano, a incluir  la posibilidad de su impresión y consecuentemente a la posibilidad de su reproducción tangible tridimensional. Estos recursos actualizados están publicados en el subproyecto "misceláneas" de la RED Descartes y los enlazamos a continuación aquí en dos triadas de imágenes que respectivamente se corresponden con cilindros y conos generalizados.

En la primera triada correspondiente a los cilindros tenemos:

  • "Cilindro generalizado" donde se muestra la construcción de un cilindro tomando como curva base una elipse y en la que podemos cambiar la dirección de la recta generatriz. La escena permite reproducir la generación del cilindro mediante desplazamiento de la generatriz sobre la curva base; simular y obtener el desarrollo plano; imprimir dicho desarrollo y el de las bases del cilindro. Adicionalmente, dado el contexto en el que se desarrolló originalmente esta escena —el metro—, se puede obtener un sistema de referencia basado en meridianos y paralelos.
  • "Ejemplos de cilindros generalizados" donde se puede elegir diferentes curvas base (circunferencia, elipse, parábola, rama de hipérbola, segmento, cardiode, deltoide, bifolium, astroide, bicircular) y reproducir las acciones indicadas en la escena anterior. 
  • "Construyo mis cilindros" que como indica el título permite al usuario definir la curva base en coordenadas paramétricas y la dirección de la generatriz que desee y con ellas construir su cilindro generalizado. De nuevo puede realizar de manera virtual interactiva las acciones ya indicadas, pero también procediendo a la impresión del desarrollo pasar a disponer de la versión tangible de "su" cilindro. Para cada curva base cambiando el número de segmentos que se desean considerar en la representación se obtienen diferentes cilindros, para simular el caso continuo basta seleccionar un número de segmentos suficientemente elevado. 
cilindro generalizado cilindro generalizado, ejemplos construyo mis cilindros
 Cilindro generalizado  Ejemplos de cilindros generalizados  Construyo mis cilindros

 

De manera análoga en la triada correspondiente a los conos generalizados tenemos:

  • "Cono generalizado" en el que se  muestra la construcción de un cono tomando como curva base una elipse y en la que podemos cambiar su vértice. La escena interactiva permite reproducir la generación del cono mediante desplazamiento de la generatriz sobre la curva base; visualizar el cono completo; simular y obtener el desarrollo plano; imprimir dicho desarrollo y el de la base del cono. Adicionalmente, dado el contexto en el que se desarrolló originalmente esta escena —el metro—, se puede obtener un sistema de referencia basado en meridianos y paralelos.
  • "Ejemplos de conos generalizados" donde se puede elegir diferentes curvas base (las mismas que en el caso de los cilindros) y reproducir las acciones indicadas en la escena anterior. 
  • "Construyo mis conos" que permite al usuario definir la curva base y el vértice y construir su cono generalizado tanto virtual como tangible..
cono generalizado cono generalizado, ejemplos construyo mis conos
 Cono generalizado Ejemplos de conos generalizados Construyo mis conos

 

En estos objetos interactivos se ha considerado que la curva base es una curva plana, así pues, he de ponerme la tarea de incorporar la tridimensionalidad de la curva base y presentarlo en un próximo artículo en este blog. Y, adicionalmente, este trabajo debería incoporar el caso de superficies tangenciales que implictamente, a priori, entraña cierta dificultad si se deja libertad de definición al usuario, pero sobre ello ya hablaremos.  

Finalizo reseñando que para la obtención automática y animada del desarrollo plano del cilindro y el cono se aplica la rotación de Rodrigues descrita en un artículo anterior de este blog. Lo que se hace es plantearlo como el desarrollo plano de un prisma o una pirámide que se ajuste suficientemente al cilindro o cono dado. En la animación siguiente se refleja el desarrollo plano de un cilindro generalizado en el que su base es la curva denominada bifolium.  

Desarrollo plano cilindro

Pulsa sobre la imagen para ampliarla


Bibliografía

Lucas, E. (2017). Superficies regladas [Trabajo fin de grado]. Universidad de Murcia. 

Rosado, E (2010). Superficies regladas [Apuntes docentes]. Universidad Politécnica Madrid.


 

Viernes, 15 Mayo 2020 00:00

Sugerencias para el Proyecto AJDA

Escrito por
Valora este artículo
(4 votos)
Actualmente, el Proyecto AJDA cuenta con más de 420 juegos, un portal Web, Blog, Canal de YouTube y DVD de recursos. Han pasado más de 12 años desde la publicación del primer juego y más de 7 desde que el Proyecto AJDA empezó como a funcionar como tal.
 
El principal objetivo de éste ha sido ofrecer sus recursos de forma libre, abierta y gratuita, con el fin de proporcionar herramientas educativas basadas en metodologías de gamificación con la finalidad de mejorar la práctica educativa. 
 
Desde sus inicios hasta ahora se han ido incrementado el número de juegos, los cursos de formación, los vídeo-tutoriales, los artículos, el número de ficheros de preguntas, etc. Se han ido mejorando los propios juegos y los portales de AJDA, así como participado en proyectos de investigación, congresos, grupos de trabajo, actividades de formación, etc.
 
Siempre he intentado que este Proyecto no pare de crecer y de mejorar y creo que las sugerencias y consejos que han ido realizando sus usuarios son muy importantes. Por ello, os animo a todos y agradecería que realicéis aportaciones a través de la Web, Blog o Canal de YouTube del Proyecto con propuestas de mejora sobre el mismo, por ejemplo en los siguientes aspectos:
 
  • Propuestas de realización de nuevos juegos.
  • Mecánicas o metodologías en el uso de juegos.
  • Mejora en los materiales de formación: cursos, tutoriales, guías...
  • Recursos y portales del Proyecto.
  • Difusión del Proyecto.
  • Sobre cualquier otra cuestión relacionada.
 
Valora este artículo
(13 votos)

En RED Descartes finalizamos el mes de marzo con sabor agridulce, pues en el tristísimo contexto de una pandemia global logramos ¡un nuevo récord en nuestro servidor proyectodescartes.org! El mes de abril transcurrió en confinamiento y a la amarga suma de tantos y tantos fallecidos se hace muy difícil anexar ninguna otra contabilización. Sólo constatando que hay unicidad entre vida y muerte y que en el transcurso o ciclo de un estado a otro la formación es imprescindible, nos atrevemos a cuantificar, en cierta forma, nuestra altruista contribución a la comunidad educativa de la aldea global en estos tiempos de COVID-19. En el mes de abril de 2020 hemos alcanzamos un nuevo récord y han sido más de cuatro millones seiscientas mil páginas las que hemos servido y en cada una de ellas hemos añadido siempre ¡mucha ilusión, ánimo y esperanza!


En el mes de abril de 2020, el número de páginas servidas desde nuestro servidor proyectodescartes.org ha experimentado un incremento de más de quinientas mil páginas con respecto al mes de marzo, un 14% más que el récord alcanzado ese mes y casi un 200% respecto al anterior récord que conseguimos hace un año, en mayo de 2019. En total: 4 666 818 páginas.

El cierre de los centros educativos, motivado por la pandemia del COVID-19, ha provocado perspectivas educativas diferentes, han surgido nuevas necesidades y muchas de ellas han podido ser satisfechas a través de nuestro proyecto educativo. Eso es lo que hemos podido constatar en nuestro servidor que ha estado bastante ocupado dando servicio a las peticiones realizadas y que, afortunadamente, se ha portado de manera eficiente en casi todo el tiempo transcurrido. En algún momento el elevado número de conexiones ralentizó la respuesta y casi llegó al bloqueo, pero una reconfiguración del sistema ha devuelto la agilidad necesaria.  

En la siguiente tabla se puede consultar en detalle parte de lo que acontecido observando las estadísticas de los registros automáticos en nuestro dominio proyectodescartes.org. Quien se adentre un poco en esa tabla puede observar que el día 10 y el 11 hay reflejadas unas cantidades muy bajas en relación al resto, la razón es que esos dos días tuvimos problemas con los archivos de "log" y no contabilizaron adecuadamente lo acontecido esos dos días, por tanto, el récord podría haber sido mayor al que reflejamos aquí. Pero no es nuestra preocupación, ni objetivo esencial, el superar récords, establecer marcas, nuestro fin es únicamente educativo y el seguimiento de estas estadísticas es meramente para tener una orientación del servicio que damos y de la utilidad de nuestro trabajo, con el matiz de que somos conscientes que la cantidad aporta sólo una visión parcial. Visión que hay que complementar cualitativamente con otras informaciones conseguidas por otros medios y que no son objeto de análisis aquí.  


La siguiente tabla refleja un detalle algo más extenso de lo acontecido estadísticamente en este mes de abril de 2020 en proyectodescartes.org

 

Nuestro agradecimiento a todos los que os acercáis a este servidor, a los que hacéis una valoración positiva de nuestra labor y a los que regresáis para que podamos aprender todos juntos.

¡Continuamos...! 

Viernes, 24 Abril 2020 13:00

Congruencias en el triángulo de Pascal

Escrito por
Valora este artículo
(11 votos)

En el artículo "El rectángulo de Newton como «simétrico» del triángulo de Pascal" llegamos a la conclusión de que si conocemos las congruencias con cero de los coeficientes en el Triángulo de Pascal, según la orientación dada por Pascal a su triángulo, entonces, por simetría, tenemos las correspondientes al rectángulo de Newton. Eso es lo que se refleja en la siguiente imagen.

Relaciones en el rectángulo de Newton

Imagen de las congruencias con cero módulo dos de los coeficientes binomiales en el rectángulo de Newton.
Simetría respecto a esas congruencias en el Triángulo de Pascal

En este artículo vamos a centrarnos en analizar cuándo un coeficiente binomial es divisible por un determinado número primo, un problema sobre el que podemos encontrar bastantes resultados con fundamento aritmético y algebraico. Aquí, nos centraremos en aquellos resultados que nos permitan determinar y visualizar gráficamente esas congruencias, es decir, poder obtener el gráfico de la imagen anterior, u otros análogos, sin necesidad de calcular el coeficiente binomial y determinar su congruencia u obtener ésta mediante una recurrencia.

La primera representación gráfica de estas congruencias puede situarse en un brevísimo artículo de Kung (1976). Esa gráfica se muestra en la siguiente imagen, la situada a la izquierda, y en la de la derecha se refleja la gráfica análoga, pero mostrándola según la orientación original de Pascal y coloreando en naranja los números combinatorios pares (en ella cada número se determina observando el correspondiente índice superior en color azul y en rojo el inferior):

 Kung  Triángulo de Pascal en la orientación original

Triángulos de paridad en el Triángulo de Pascal. Kung, S. H. L. (1976).
Parity triangles of Pascal’s triangle. Fibonacci Quart. 14: 54;
 

Triángulos de paridad en el Triángulo de Pascal en su orientación original 

Kung adicionalmente afirma, sin incluir la demostración, que para entero no negativo:

  • Si n = 2 y 1 ≤ k ≤ n-1, entonces nk es par. 
  • Si n = 2i-1 y 0 ≤ k ≤ n, entonces nk es impar.

Y ello se observa en las imagenes anteriores ya que para n = 0, 3, 7, 15, 31, todos los símbolos en esas filas o diagonales, respectivamente, son asteriscos (números impares). Y para  n = 2, 4, 8, 16, 32, son todos cruces (números pares), salvo el primero y el último.

Ese es un breve artículo, pero que marca unas pautas que son extrapolables a la obtención de patrones en las congruencias con cero módulo otros números primos. De hecho, ese resultado es un caso particular de los dos que fueron enunciados en 1947 por N. J. Fine en su artículo "Binomial coefficients modulo prime", si bien el primero de ellos (según Joris et al. en un artículo de 1985) ya lo formuló Ram en 1909 (B. RAM, Common factors of n!/m!(n-m)!, (m= 1, 2 ,..., n- l), J. Indian Marh. Club (Madras) 1 (1909), 39-43):

  1. La condición necesaria y suficiente para que todos los coeficientes binomiales nk con 0 < k < n, sea divisible por un primo p es que n sea una potencia de p.
  2. La condición necesaria y suficiente para que ningún coeficiente binomial de índice superior n, con n = n+ np + n2 p + nm pm, siendo 0 ≤ nr < p y nr > 0,  sea divisible por p es que nr = p - 1 para m

Veamos cómo se reflejan estos resultados de una manera gráfica en las dos imágenes siguientes:

  • En la imagen izquierda, se refleja gráficamente el primer resultado cuando p = 3, mostrándose todas las líneas en las que todos los números combinatorios son divisibles por 3, salvo el primero y el último. Esas líneas se corresponden con  nk con 0 < k < n n = 30313233,... Gráficamente vienen a ser las "hipotenusas" de los triángulos rectángulos que particionan al triángulo de Pascal y que lo muestran a diferentes escala y posteriormente utilizaremos esta analogía y terminología coloquial para ubicar y describir otros resultados.
  • En la de la derecha se reflejan aquellas líneas en las que ningún número combinatorio es divisible por 3. En la parte superior de esa imagen se reflejan las separaciones entre esas filas (por falta de espacio tipográfico no se refleja el caso 30) y a la derecha se muestra la descomposición p-ádica del índice n correspondiente a los números combinatorios de cada una de esas líneas (expanda la imagen pulsando sobre ella para verlo). Por ejemplo, para 53 = 2 30 +  2 31 + 2 32 + 1 33 y eso nos muestra el camino de "saltos" de amplitud potencias de tres que se han de dar para, partiendo de 0, llegar a 53 (dos de amplitud 30, dos de 31, dos de 32 y uno de 33). Es decir, logramos mostrar visualmente, geométricamente, lo que queda escondido en un abstracto resultado algebraico, el cual puede ser chocante a cualquiera que accede a él por primera vez. Emulando a nuestro alumnado a la pregunta: ¿a quién se le ocurre que la descomposición p-adica da respuesta a este problema? le mostramos que el resultado algebraico, posiblemente, fue consecuencia de su visualización y la "pureza" matemática procedió a esconderlo. 
 Kung  

Números combinatorios nkdivisibles por 3 para todo k, 0 < k n 
Líneas con todos los números combinatorios divisibles por 3 salvo los extremos

Números combinatorios nkno divisibles por 3 para ningún k, 0 ≤ k n
Líneas con ningún número divisible por 3

En la miscelánea del final de este artículo podemos reproducir las situaciones descritas para cualquier primo hasta el 31 y en este enlace se tiene un muestrario rápido de las mismas. 

Y justamente, en base a la observación de esos patrones geométricos, podemos visualizar y deducir la propiedad que nos permite detectar todas las hipotenusas de todos los triángulos rectángulos isósceles que muestran esas congruencias. Podemos ver cómo hay triángulos de diferente tamaño, siendo pa-1 el tamaño de las hipotenusas respectivas, y cada uno de ellos tienen una distribución periódica en horizontal y vertical con un periodo pa. Por ejemplo, en la siguiente imagen se reflejan en color naranja los números combinatorios congruentes con cero módulo 5 y se observan tres tipos de triángulos según su tamaño: los de hipotenusa 4 = 51-1, los de 24 = 52-1 y parcialmente (en la esquina inferior derecha) el de 124 = 53-1. La hipotenusa del primero se ha reflejado en color verde y el triángulo se repite periódicamente en horizontal y vertical con un periodo 5, según se ve en dicha imagen. La del segundo está reflejada en color violeta y se repite también periódicamente con periodo 52, y así sería de manera análoga y sucesiva. 

periodicidad Periodicidad en las hipotenusas de los triángulos congruentes

Lo anterior, ahora le invito a que mire con ojos algebraicos, queda englobado en el resultado que enuncio a continuación:

p es divisor de todos los números combinatorios mpak con m, ak ∈ ℕ,  0 < k <  mpa y k no divisible por pa     (1)

Este resultado personal puede relacionarse o considerarse como una reinterpretación —que se centra, enfoca y destaca el aspecto de periodicidad— del aportado por Ram (1909) —del que puede verse la demostración realizada por Albree (1972)— que afirma:

Para cualquier entero positivo npr = mcd { nk con 0 < k < n, y mcd (k, p)=1 } donde p es primo, r es un entero positivo y pr divide a n

Y ¿por qué les remarco que es de gran interés determinar esas hipotenusas? La respuesta también puede visualizarse en la imagen anterior y lo detallamos a continuación ya que conocida una hipotenusa de números congruentes con 0 módulo pnk con rk < s, por la propiedad de los números combinatorios que relaciona los de índice superior n+1 con los de índice n,

SumaNumCombinatorios

se deduce que los números combinatorios que componen el triángulo rectángulo T(n; r, s)

Tnrsdef          (2)

—ver imagen siguiente— son también congruentes con 0 módulo p. La justificación es simple, dado que la suma de dos números divisibles por p es un número divisible por  p.

TnrsTransmisión de la congruencia en las hipotenusas a los triángulos rectángulos

Joris et al. (1985) abordan un estudio más profundo al que necesitamos aquí de las propiedades de estos triángulos y a él dirigimos a quienes estén interesados en incrementar su conocimiento en este tema. 

Combinando (1) y (2), concluyo que los números combinatorios congruentes con 0 módulo p siguen un patrón de triángulos "rectángulos" T(pa; 1, pa-1) cuyas hipotenusas están constituidas por los números combinatorios pak con ak ∈ ℕ,  0 < kpa

Patrón triángulos para divisor 3Patrón de triángulos T(pa; 1, pa-1) con p=3  y a = 1,2, y 3

distribuyéndose de forma periódica según el esquema:

T(m pa; 1+pa, (1+k)pa-1)  con 0 ≤ k < ma, m ∈ ℕ  

Eso es lo que se observa en el siguiente mosaico de imágenes donde se refleja:

    • imagen superior izquierda: números combinatorios congruente con 0 módulo 3 en color naranja.
    • imagen superior derecha: triángulos congruentes con T(31; 1, 31-1) en color verde claro y las hipotenusas en verde oscuro, y desplazamiento periódico en horizontal y vertical con periodo 3.
    • imagen inferior derecha: triángulos congruentes con T(32; 1, 32-1) en color verde claro y las hipotenusas en verde oscuro, y desplazamiento periódico en horizontal y vertical con periodo 32
    • imagen inferior derecha: triángulos congruentes con T(33; 1, 33-1) en color verde claro y las hipotenusas en verde oscuro, y desplazamiento periódico en horizontal y vertical con periodo 33

Patrón triángulos para divisor 3Esquema de periodicidad de los triángulos T(pa; 1, pa-1) con p=3  y a = 1, 2, y 3

Así pues la reproducción de todas las congruencias con 0 es una mera reiteración gráfica, periodicidad, de esos triángulos básicos citados.

Pero dado un número combinatorio nk ¿podemos saber si es o no congruente con 0 módulo sin necesidad de calcularlo, de una manera sencilla, rápida y sin aplicar recursividad, o lo que es equivalente, sin basarse en diagonales, es decir, en números combinatorios con índice superior menor que n? ¡Veamos que sí! y para ello nos vamos a basar en la posición relativa (fila y columna) que ocupa cada número combinatorio en el triángulo de Pascal original. Observemos que el número nk ocupa la fila n-k y la columna k, que todos los números combinatorios de índice n cumplen que la suma de la fila y la columna que ocupan es n, y que los números combinatorios del triángulo rectángulo T(n; r, s) cumplen que la suma de la fila y la columna de todos ellos es mayor o igual que n. Con este dato y en base a la periodicidad podemos afirmar lo siguiente:


Dado el número combinatorio nk, consideremos la descomposición p-ádica de n-y de k

n- a+ ap + a2 p2+ ⋅ + am pm

 = b+ bp + b2 p2+ ⋅ + bm pm

con m =  max (ent(logp(n-k)), ent(logp(k)) ), 0 ≤ aj, bj  < p, se verifica que:

nk es divisible por p si y solo si a+ bj  ≥ p al menos para algún j,  0 ≤ j m.

Además, para los valores de j en los que  a+ bj  ≥ p, entonces nk está en un triángulo T(pj+1; 1, pj+1-1) de números congruentes con 0 módulo p.


En la siguiente escena se puede reproducir visualmente todos los resultados indicados anteriormente y profundizar en el conocimiento de las interioridades del Triángulo de Pascal. 

congruencias en el triángulo de Pascal

Pulsa sobre la imagen para abrir la escena

En la imagen anterior se observa como el número combinatorio 30 sobre 23 es congruente con cero módulo 2 y forma parte de un triángulo rectángulo básico de hipotenusa 1 , otro de hipotenusa 3 y otro de hipotenusa 7 (para éste último es evidente, para los dos anteriores haga traslaciones de los triángulos básicos, según el periodo antes indicado, y verá que ese número combinatorio está incluido en ellos). Todo se obtiene sin más que observar la relación de los coeficientes en la descomposición 2-ádica de la fila y columna que ocupa, ya que en este caso, para las tres primeras potencias de 2 la suma de los coeficientes es mayor o igual que el valor del módulo (en este caso 2).


Llegados a esta meta, estando aún confinados por la pandemia del COVID-19, cabe preguntarse si este artículo, y los dos anteriores publicados en este blog sobre este tema, tendrá o no continuidad... el tiempo lo dirá o quizás la necesidad de cambiar de temática para relajar la mente en otros ámbitos lo interrumpa. Tenga o no alguna nueva adenda, gracias a todos los que habéis dedicado parte de vuestro tiempo en leer lo descrito y los nuevos resultados hallados y expuestos en esta trilogía. 

Página 21 de 71

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information