buscar Buscar en RED Descartes    

Mostrando artículos por etiqueta: universidad

En este nuevo artículo sobre la ontogenia matemática del Nautilus, después de haber modelizado los septos en el segundo y tercer verticilio bajo el invariante de tangencialidad, nos adentramos en la modelización de los septos en el primer verticilo. Esta primera fase de crecimiento vimos que se muestra diversa y con apariencia poco regular, cambiante (menor número de cámaras septales,  ocho frente a las dieciséis de la etapa juvenil y adulta, con secciones y amplitudes que cambian como necesidad biológica para alcanzar la flotabilidad) y, ahora, ha llegado el momento de mostrar el modelo matemático que da explicación a esta etapa e introduce la regularidad esperada que parecía no acaecer, pero que queda al descubierto bajo la perspectiva matemática. De nuevo, el hecho de que intervengan dos espirales con diferente polo, en este caso  la espiral de la pared ventral y la espiral de los polos de los septos, conduce a proporciones variables entre los radios vectores y consecuentemente a que se formen septos con factores de escala variables. Ello nos conduce y permite determinar las ecuaciones de los septos, los puntos de tangencia con la pared ventral y los de intersección con la pared dorsal (para ello necesitaremos introducir un grosor en el modelo matemático de esa pared, que es lo que físicamente acontece).

Completaremos el contenido de este documento agrupando y relacionando entre sí diferentes puntos que se han ido detectando en este análisis. Unos que denominamos notables, porque matemáticamente son los que establecen el modelo matemático y dan explicación causal al mismo, y que son polos de diferentes espirales. Y otros que catalogaremos como destacables, posible fuente de inspiración matemática futura, y que son centros desde los que algunos objetos se observan con perspectiva angular constante.

  Nautilus vi
 Propociones entre los radios vectores de la espiral ventral y los de la espiral de los polos de los septos  Puntos notables y destacables

 

Así pues, doy continuidad a los artículos anteriores (I, II, IIIIV y V), con un contenido adicional que espero sea de su interés —¡para mí es siempre una satisfacción! ir pudiendo relatarles progresivamente lo que, poco a poco, me cuenta la concha de este animalito—, y he de adelantarles que serán necesarios algunos artículos adicionales porque aún nos quedan secretos que dilucidar en esta ontogenia, en particular lo que acontece en la transición de la fase embrionaria (primera y segunda cámara septal) donde el sifúnculo cambia abruptamente de posición, y en la fase de transición entre el primer y segundo verticilo (cámaras octava, novena y décima) donde al finalizar la primera vuelta se produce el encuentro del fragmacono con la concha embrionaria. Y también habrá que abordar la síntesis o resumen final, es decir, plasmar y reproducir ese modelo ontogénico de la concha del Nautilus.

 SitioSingularesNautilus 
El sifúnculo en la segunda cámara septal  Transición entre el pimer y segundo verticilo 

 

Como observamos, una mirada atenta y un continuo deseo de comprensión nos hace ir visualizando cada vez más detalles que inicialmente pueden parecer nimios, pero que finalmente se han ido mostrando como retos cuya resolución es de interés. Todo ello, a costa de que a ustedes a lo mejor les ocurra como a mi sobrina nieta (Aurora, cerca de los cuatro años) que ayer, al verme una vez más delante de la pantalla de mi ordenador, indagando la imagen de la sección del Nautilus con diversos objetos matemáticos superpuestos, la cual ya ha observado en multitud de ocasiones y quizás hayan sido demasiadas para ella, dijera: "¡Tita!, ¡el tito todavía no ha hecho sus deberes!". Por tanto, espero poder ir finalizando mis deberes, que realmente no son más que satisfacciones aunque requieran esfuerzo y dedicación, y que en el trancurso hacia su final les pueda tener como lectores y juntos podamos desarrollar nuestra vocación como  μαθηματικός (mathēmatikós) o amantes del conocimiento. 


En el siguiente pdf (o desde este enlace) tienen desarrollados los contenidos de este artículo

Ontogenia matemática del Nautilus VI



Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión

 

Curvas_y_Superficies_Parametricas

Título: Curvas y superficies paramétricas (segunda edición)
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría plana y tridimensional
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Juan Guillermo Rivera Berrío y Josep Maria Navarro Canut 
ISBN: 978-84-18834-35-6

 pdf versión en pdf con enlace a los interactivos



InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

Integrando con Paco

Título: Integrando con Paco
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Integración
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Juan Guillermo Rivera Berrío, y José Román Galo Sánchez 
ISBN: 978-84-18834-34-9

 pdf versión en pdf con enlace a los interactivos



InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

Esta semana presentamos la unidad Estadística básica, un objeto digital interactivo con actividades de introducción al estudio estadístico, para los cursos de bachillerato y la Universidad.

En esta unidad se introducen las variables estadísticas, las medidas de centralización y de dispersión y se indican los pasos necesarios para la construcción de tablas de frecuencia y diagramas de barras.

La unidad consta de cuatro fases:

Motivación. En esta primera fase se presentan dos vídeos de introducción al tema.

Inicio. Este apartado contiene tres escenas: una primera actividad de clasificación de diferentes tipos de variables, una segunda página con ejercicios para calcular las medidas de centralización y finalmente una escena con ejercicios de cálculo de las medidas de dispersión.

Desarrollo. Incluye actividades de cálculo de medidas estadísticas, elaboración de tablas de frecuencia y diseño de gráficas de barras.

Cierre. Comprende un resumen de los conceptos estudiados y actividades de autoevaluación para consolidar lo aprendido.

La unidad Estadística básica pertenece al proyecto Un_100, un proyecto que agrupa recursos educativos de las áreas de Matemáticas y de Física para los niveles de bachillerato y Universidad. En su elaboración han participado académicos de México, España, Colombia y Chile.

Publicado en Vídeos

 

Cálculo diferencial e integral

Título: Cálculo diferencial e integral, módulo II. 
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Cálculo diferencial
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Carlos Alberto Rojas Hincapié  
ISBN obra completa: 978-84-18834-30-1
ISBN del volumen: 978-84-18834-33-2

 C%C3%A1lculo_Diferencial_e_Integral-2.pdf"aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

Ecuaciones diferenciales

Título: Ecuaciones diferenciales 
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Cálculo diferencial
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autores: Jaime Humberto Ramírez Ríos 
ISBN: 978-84-18834-32-5

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

Cálculo diferencial e integral

Título: Cálculo diferencial e integral, módulo I. 
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Cálculo diferencial
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Carlos Alberto Rojas Hincapié  
ISBN obra completa: 978-84-18834-30-1
ISBN del volumen: 978-84-18834-31-8

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

Introducción a la graficación por computadora

Título: Introducción a la graficación por computadora
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría analítica
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autora: Melissa Méndez Servín 
ISBN: 978-84-18834-29-5

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Publicado en iCartesiLibri

 

HCI

Título: HCI - Interfaces Humano-Computador orientado a la Inclusión Social (2ª edición)
Sección: iCartesiLibri
Bloque: Ciencias computacionales
Unidad: Interfaces humano-computador
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autores: Ramiro Antonio Lopera Sánchez, Oscar Ignacio Botero Henao, Oscar Julián Galeano Echeverri, Miguel Alberto Becerra Botero y Javier Alberto Saldarriaga Cano 



 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

 

Publicado en iCartesiLibri

En nuestro modelo uniforme del Nautilus (Galo et al. 2016) detectamos que los septos son arcos de espirales cordobesas y, adicionalmente, que sus respectivos polos estaban ubicados también en una espiral cordobesa. Ése fue, quizás, el mayor y más novedoso avance logrado en la modelación de esta concha. No obstante, allí, no abordamos la evidente diferencia que acontece entre ellos según las etapas vitales de estos especímenes y, consecuentemente, lo que ocurre también en las cámaras septales que determinan. En especial, esas diferencias se presentan entre el primer verticilo y en los dos restantes. Allí, tampoco profundizamos en el modelado de las intersecciones de los septos con la pared ventral y la dorsal y sólo aventuramos una posible base teórica del fragmacono en base al gnomon de un triángulo cordobés. Ahora, habiendo profundizado en el estudio de la literatura existente sobre la ontogenia biológica del Nautilus y también en el análisis matemático del modelo propuesto entonces, es el momento de adentrarnos en un modelo matemático diferenciado por fases, es decir, de abordar la ontogenia matemática de los septos.

Siguiendo lo indicado en los artículos anteriores de esta serie (puede consultar: I, II, III y IV), y en particular en lo relativo a la modelación de la pared dorsal y ventral de la sección sagital de la concha, partimos de una base o fundamento primordial que es el que justifica y explica el distinto comportamiento de los septos entre el primer verticilo y los siguientes. En el primero, ambas paredes se corresponden con arcos de dos espirales cordobesas que tienen diferente polo, sin embargo, en el segundo y en el tercer verticilo las espirales de ambas paredes son copolares, tienen el mismo polo, siendo realmente arcos de una única espiral con un retardo angular entre ambas de 2π. Así pues, dado que la complejidad es mayor en el primer verticilo vamos a proceder en orden cronológico inverso y analizaremos en primer lugar el segundo y tercer verticilo y posteriormente el primero.

Los septos en el segundo y tercer verticilo

La pared ventral en el segundo y tercer verticilo viene dada por

ontogeniaf22       (20) 

donde θ es el ángulo que marca el inicio de la concha embrionaria  y θ la terminación de la misma delimitando la boca de la concha.

Y en el mismo instante[1] angular vital θ, la pared dorsal sería:

ontogeniaf502    (21)     

La espiral que contiene a los polos de los septos es:

ontogeniaf503     (22)

donde e es un factor de escala o de retardo en la espiral cordobesa [2].

Y cada septo, ver (11 en IV), es un arco de una espiral:

ontogeniaf504     (23)

donde ontogeniaf505determina la amplitud angular del arco de esa espiral que comprende el septo n-ésimo; ρ determina unívocamente cada uno de los puntos de dicho septo, pero todos ellos se corresponden con un mismo instante vital[3]; d es un factor de escala o de retardo a determinar en el modelo; y ontogeniaf506 es el polo de la espiral que incluye a ese arco septal n-ésimo y que perteneciendo a la espiral (22) quedará determinado por un valor αn.

La aplicación en el modelo de la que hemos denominado invariante tercera (tangencialidad entre la pared ventral y las paredes de los septos) nos puede llevar a determinar los parámetros antes citados. De partida:

  • Toda espiral logarítmica es equiangular, así pues, en cualquier punto de la espiral la recta tangente y el radio vector forman siempre un mismo ángulo ψ. Éste es característico de cada tipo espiral y depende sólo de la base b que la define, siendo ontogeniaf507. En el caso de una espiral cordobesa este ángulo es ψ ≃ 80,32º, al ser la base logarítmica o exponencial que la define κ = 1,185580...
  • Al ser tangentes la espiral ventral y la septal, ambas comparten la misma recta tangente. Y dado que ambas espirales son cordobesas entonces, consecuentemente, los radios vectores de ambas han de estar también en la misma recta, porque ambos han de formar el mismo ángulo con la tangente común.

 ontogeniaf508
(i) Espiral azul discontinua: pared dorsal en el segundo verticilo. (ii) Espiral azul continua y de puntos: pared ventral en el segundo verticilo.
(iii) Espiral magenta: espiral de los polos de los septos. (iv) Tn: punto de tangencia septo y pared ventral; Sn: polo del septo y P: polo común de la espiral dorsal, de la ventral y de la de los polos de los septos.
Fig. 40. Tangencialidad de los septos con la pared ventral. 

Por tanto (ver Fig. 40), si Tn es el punto de tangencia del n-ésimo septo (con n>8, pues en el primer verticilo hay ocho septos), Sn es el polo de éste y P el polo de la pared ventral, tenemos que:

  • Al ser Tn un punto de la espiral ventral, entonces: 

 ontogeniaf509        (24) 

para algún θ.

  • Al ser Sun punto de la espiral de los polos de los septos, por (22), 

ontogeniaf510      (25)

donde α = θ al estar alineados P, Sn, y Tn y ser P el polo común a la espiral ventral (20) y a la espiral de los polos de los septos (22).

  • Al ser Tn un punto del septo n-ésimo

ontogeniaf511   (26)

para algún valor de ρ.

Y dado que 

ontogeniaf512   (27)

de las relaciones anteriores, (24) a (26), obtenemos que:

ontogeniaf513.    (28)

Expresando en (28) d = d' κθ - ρ, es decir, considerando que ρ es un ángulo de retardo, tenemos:

ontogeniaf514    (29)

Y de ahí

d' = 1 - e.       (30)

 En Galo et al. (2016) detectamos que en la espiral de los polos de los septos (22) e ≃ 0,5 e igual acontecía para la espiral que da forma a los arcos de los septos. Aquí la relación obtenida en (30) conduce a considerar que e = 0,5 (exactamente ese valor[4]), pues en ese caso también es d' = 0.5, y consecuentemente la espiral correspondiente a un determinado arco septal se obtiene sin más que realizar una traslación de la espiral de los polos para que el polo de ésta coincida con el polo de dicho septo. (ver fig. 41).

ontogenia41

Fig. 41. Obtención de un arco septal como traslación de un arco de la espiral de los polos. 

Intersección de la pared dorsal y los septos en el segundo y tercer verticilo

Centrémonos ahora en la determinación de la intersección de los arcos de los septos con la pared dorsal y la amplitud de estos.

ontogenia42

Fig. 42. Parámetros que definen los septos en el segundo y tercer verticilo.

Para el septo n-ésimo, según la denominación de los ángulos reflejados en la fig. 42 y fijado el valor de e = 0,5, por (25) tenemos que:

ontogeniaf516     (31)

El punto Dn, intersección de ese septo con la pared dorsal, por pertenecer a ella y según (21) verifica que

ontogeniaf517    (32)

y, a su vez, por pertenecer al arco del septo:

ontogeniaf518     (33)

  • Aplicando el teorema del coseno en el triángulo de vértices P, Sn y Dn:

ontogeniaf519  (34) 

        y considerando las expresiones (31), (32) y (33) llegamos a la igualdad:

ontogeniaf520    (35)

  • Aplicando el teorema del coseno en el triángulo de vértices Tn, Sn y Dny teniendo en consideración que ontogeniaf521 obtenemos que:

ontogeniaf522   (36)

Y puesto que las coordenadas de los puntos que intervienen en esa igualdad son:

ontogeniaf523

se tiene que:

ontogeniaf524     (37)

Y teniendo en consideración (31) y (33)

ontogeniaf525    (38)

Por tanto, la igualdad (36) queda expresada como:

ontogeniaf526    (39)

A partir de (35) y (39) tenemos un sistema de dos ecuaciones que nos relaciona al ángulo γ (amplitud del arco del septo), con el β (retardo del punto de intersección dorsal del septo Dnrespecto al punto de intersección ventral Tn). Este sistema puede reescribirse como:

ontogeniaf527      (40)

 Es decir,

ontogeniaf533  (41)

 

ontogenia43

Escena interactiva 5. Determinación numérica de la amplitud del septo.
Pulse sobre la imagen para interactuar libremente con ella.

La resolución numérica de la ecuación (41) (puede observarse en la escena interactiva 5, donde la gráfica en azul se corresponde con la función en la variable γ, definida por la expresión del miembro de la izquierda en (41) con 0 ≤ γπ) nos permite determinar:

  • La amplitud del septo ontogeniaf528γ = 2,5090... radianes ≃ 143,76º.
  • El desplazamiento entre la intersección dorsal y la ventral ontogeniaf529β = 0,6831... radianes ≃ 39,14º.
  • El ángulo entre los radios vectores ontogeniaf530 y ontogeniaf531ontogeniaf532

Apoyándonos en que en una espiral cordobesa el ángulo que forma el radio vector con la recta tangente es de 80,32 º tenemos que (ver Fig. 43) el ángulo que forma la recta tangente a la pared dorsal en Dcon la recta tangente al septo en ese mismo punto es de 75,38º, es decir el septo no interseca a la pared dorsal perpendicularmente, si no formando con respecto a esa perpendicular un ángulo de 14,62º. Eso concuerda con lo indicado por Mutvei &  Doguzhaeva (1997), que ya reflejamos en la figura 20, y la depresión septal dorsal en el área media ―sección o corte que es el que estamos analizando en este estudio― lo que hace es corregir dicha desviación respecto a la perpendicular buscando aportar y lograr, quizás, una mayor consistencia (eso es lo que puede interpretarse de este hecho aportado por la matemática).

Este comportamiento teórico es el mismo tanto en el segundo como en el tercer verticilo, pues en ambos casos la pared dorsal y ventral comparten el mismo polo. En el tercer verticilo, esa depresión dorsal parece ser menos notable, al menos aparentemente, si bien sí pueden visualizarse o intuirse (interactuar por ejemplo con la digitalización del Nautilus del Museo Dundee ―figura 22―). Matemáticamente no hay diferencia.

ontogenia44

ontogenia45

 Fig. 43. Ángulo de incidencia entre septo y pared dorsal en el segundo y tercer verticilo.

Ecuaciones del modelo 

Así pues, en estos dos verticilos los arcos de los septos tienen por ecuación (23), donde para cada n ≥ 8  (en el primer verticilo hay ocho septos y el octavo da inicio al segundo) tenemos que:

  • d = 0,5.
  • ontogeniaf535 siendo ontogeniaf534
  • ρ ∈ [ α- γ, α], con γ = 2,5090...

Los puntos de tangencia son: T( ontogeniaf536) y los de intersección con la pared dorsal pueden escribirse:

  • como punto de la pared dorsal: Dn (ontogeniaf537), donde denotamos βn = αn - 2π - β con β = 0,6831.
  • como punto del arco de septo: ontogeniaf538ontogeniaf539.
Síntesis

La introducción de la tangencialidad entre la pared ventral y los septos nos ha permitido lograr la modelación matemática de la sección sagital del Nautilus en el segundo y tercer verticilo y acentuar el caracter cordobés de sus elementos. En la escena interactiva 6, podemos observar e interactuar con este modelo.

nautilus2y3verticilo

 Escena interactiva 6. Modelo tangencial de los septos y de la pared ventral en el segundo y tercer verticilo.
Pulse sobre la imagen para interactuar libremente con ella.

El camino seguido en el análisis anterior nos puede servir de guía para abordar el estudio de los septos en ese primer verticilo tan especial. Especial por ser la pared dorsal y la ventral espirales cordobesas con distinto polo y, como veremos, por ser ésta la causa esencial de esas cámaras diferentes y esos septos variables. Un estudio que considero es interesante y matemáticamente bonito. Pero siento dejarles con la miel en los labios ya que lo dejaré para un nuevo artículo... espero no tenerles en vilo mucho tiempo.


Bibliografía 

Galo J.R., Cabezudo A. y Fernández I.(2016) : Sobre la forma y crecimiento cordobés del Nautilus PompiliusEpsilon, 2016, Vol. 33 (3), nº 94.

Mutvei, H. and Doguzhaeva, L. (1997): Shell ultrastructure and ontogenetic growth in Nautilus pompilius L. (Mollusca: Cephalopoda). Palaeontographica Abteilung A Palaeozoologie–Stratigraphie, vol. 246, p. 33–52.

Ward, P. (1979). Cameral liquid in Nautilus and ammonites. Paleobiology, 5(1), pp. 40-49.

Ward, P., Greenwald, L., & Magnier, Y. (1981). The chamber formation cycle in Nautilus macromphalus. Paleobiology, 7(4), 481-493. doi:10.1017/S0094837300025537

 


[1] Al no tener una referencia temporal del crecimiento del Nautilus, sólo podemos señalar un mismo instante vital teórico mediante el uso de una amplitud angular común. De esta manera establecemos momentos, atemporales, en la que se han de dar coincidencias vitales. En este caso, para un valor fijado de θ, conocemos el punto de la pared ventral y el punto de la pared dorsal que están relacionados entre sí.

[2] En estos verticilos, en el modelo uniforme se detectó que ≃ 0,5, que es un valor próximo al valor medio del factor correspondiente al sifúnculo y al del de la pared dorsal ―Galo et al., 2016―.

[3] Para conocer el proceso de formación de las cámaras de los nautilos podemos acudir a lo estudiado y analizado por Ward, Greenwald y Magnier (1981) en su artículo “The chamber formation cycle in Nautilus macromphalus”. Estos autores basan su estudio en la observación radiográfica (ver figura 26) de diferentes ejemplares en distintos momentos y, así, pueden analizar las variaciones que acontecen y realizar mediciones que llevan a plantear un crecimiento periódico que comprende tres fases:

  • Formación de una cresta mural en la posición que ocupará el nuevo septo. Esta cresta es una delgada banda anular interna de carbonato cálcico.
  • Desplazamiento hacia delante del manto septal para ubicarse a la altura de la cresta mural y ajustarse a ella. Inicio del proceso de calcificación del nuevo septo. También el sifúnculo comienza a calcificar un anillo de conexión en el interior de la nueva cámara uniendo el septo anterior y el nuevo. Durante esta fase la nueva cámara está llena de líquido cameral (Ward, 1979) y no acontece ningún vaciado de la misma, pero ese vaciado sí continúa en las cámaras anteriores.
  • Vaciado del líquido de la nueva cámara, que se inicia cuando el nuevo tabique ha alcanzado de un tercio a dos tercios de su espesor final. Este vaciado se denomina acoplado pues el líquido está en contacto con el anillo de conexión sifuncular. En esta fase el tabique septal sigue construyéndose, engrosándose, finalizando este proceso cuando el volumen del líquido vaciado es aproximadamente el 50% y ya no está en contacto con el anillo sifuncular, momento en el que se pasa a un proceso de vaciado desacoplado y comienza la formación de una nueva cresta mural y, consecuentemente, un nuevo ciclo.

Durante el ciclo de formación de una cámara, el crecimiento de la concha exterior parece ser que es continuo, pero hay una correlación inversa entre el porcentaje de líquido que se ha vaciado en la última cámara construida y la amplitud angular de la cámara habitacional. A medida que la cámara septal está más vacía la cámara habitacional es mayor y viceversa. Esta relación logra mantener la flotabilidad ya que cuando la nueva cámara está más llena de líquido el peso de la concha en la zona habitacional es menor y a medida que decrementa el líquido aumenta la amplitud de la zona habitacional. El inicio de cada cámara representa un punto crítico para la flotabilidad global, pero esto se compensa con el vaciado desacoplado que sigue aconteciendo en las cámaras anteriores.

[4] También se apuntó la posibilidad de que ese valor correspondiera a la espiral intermedia entre la del sifúnculo y la pared dorsal, es decir, ontogeniaf515, pero en este caso d' ≠ e, es decir las dos espirales citadas son diferentes. De ahí que optemos por el valor e = 0.5.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión
Página 5 de 50

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales Res. de Problemas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information