Título: Cálculo, vol. I. Cálculo diferencial.
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Cálculo diferencial
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autores: Elena Esperanza Álvarez Sáiz y Juan Guillermo Rivera Berrío
ISBN obra completa: 978-84-18834-18-9
ISBN del volumen: 978-84-18834-19-6
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Desarrollo humano y social
Sección: iCartesiLibri
Bloque: Ciencias humanas y sociales
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Mario Javier Naranjo Otálvaro, Gustavo Adolfo Tobón Pereira, Héctor Eduardo Cardona Carmona, Juan Guillermo Rivera Berrío
ISBN: 978-84-18834-17-2
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
En su primer verticilo, la concha del Nautilus tiene un crecimiento diferenciado del que acontece en el segundo y tercero. Su esencia, implícita y explicitamente, es siempre cordobesa, pero de partida el número de cámaras en ese primer verticilo son ocho y consecuentemente con paso π/4 entre ellas, frente a las diecisés y paso π/8 del segundo, paso que también ocurre en el tercero. ¿Qué acontece en la ontogenia del Nautilus que sea la causa productora de esa distinción? En este segundo artículo (desde aquí puede acceder al primero) nos adentraremos en la biología de este animal, o más precisamente en el rastro calcáreo que deja y que conforma su concha, para tratar de dar respuesta matemática a esta pregunta. Procedamos a iniciar y a adentrarnos en la ontogenia del Nautilus y desde ahí trascender a su ontogenia matemática.
A primera vista la concha embrionaria del Nautilus (Fig. 6), en su periodo pre-cameral, aparenta una forma similar a la concha de una lapa (Fig. 7) (MolluscaBase eds., 2021), pero a diferencia del crecimiento que sigue ésta, que simplificadamente podemos decir que es radial y anular, el Nautilus aborda un cambio de concavidad en la parte dorsal y adopta una curvatura similar tanto en la parte ventral como en la dorsal (Fig. 8) y eso es lo que marca la tendencia a la forma enrollada que adquirirá con posterioridad. La parte dorsal embrionaria es inicialmente casi plana, pero en la denominada constricción de la cicatriz (Fig. 11), coincidiendo con el inicio de la formación de las primeras cámaras y septos, es cuando se produce ese cambio de concavidad que forma el labio interior dorsal (observar en la parte inferior de la Fig. 6-D el piquito que está formándose y en las figuras 12 a 14 cómo se va desarrollando ese labio). Si no se produjera ese cambio de concavidad, irremediablemente la concha se cerraría al intersecar consigo misma. Cuando al crecer, el labio llega a confluir con la parte dorsal inicial de la concha se produce la formación del espacio umbilical u ombligo (Figura 10), momento en el que se completa el primer verticilo y, consecuentemente, la parte ventral inicial de la concha pasa ahora a ser interior a la misma y comienza a actuar como nueva parte dorsal de la cámara habitacional en el segundo verticilo.
Fig. 6. Embrión de 4 meses del Nautilus pompilius. Imagen B: Perfil con el saco vitelino exterior (oys: outer yolk sac). Imagen D: Detalle de la concha embrionaria. (Procedente de Sasaki, et al., 2010).
Fig. 7 Lapa (Patella). Muséum national d’Histoire naturelle, Paris (France).
Fig. 8. Embrión del Nautilus belauesis dentro de la cápsula del huevo (éste ha sido recortado en la parte superior. El embrión contaba con una cámara septal. Procedente de Saunders and Landman (2010: pl. IV, p. xxxiv) |
Fig. 9. Labio dorsal (señalado por la flecha) en la concha del Nautilus en la fase de dos cámaras. (Procedente de Landmam et al.1989). |
Fig. 10. Detalle del ombligo y de las primeras cámaras. Se observa la concha embrionaria inicial tipo lapa, la constricción que marca el inicio de la pared ventral y el cambio de curvatura en la pared dorsal.
(Procedente de la imagen 3D de la Universidad de Dundee).
Así pues, el perfil de la concha embrionaria preseptal del Nautilus (Fig. 6) puede simplificarse o sintetizarse en dos líneas curvas: la que delimita la parte dorsal y la correspondiente a la ventral (parte izquierda y derecha respectivamente en la figura 6.B). Esta simplificación nos recuerda y hace pensar en la conjunción, antes señalada, entre la espiral longitudinal y la transversal observada en el análisis resumen expuesto en la introducción. Y esa perspectiva se refleja claramente en la sección de dicha concha embrionaria correspondiente a esa fase preseptal (Fig. 11) donde la parte dorsal embrionaria bien podremos catalogarla como el septo cero o inicial (Mutvei & Doguzhaeva, 1997, indican que el protosepto o capa interior sobre la concha inicial es un septo que carece de tubo sifuncular).
Precisamente es en la constricción de la cicatriz (C1 en la Fig. 11) donde la concha adopta la curvatura cordobesa en la pared ventral e inicia el cambio de concavidad en la pared dorsal, iniciándose el labio dorsal. Las figuras 12 a 14 muestran el desarrollo durante la formación de los tres primeros septos.
Fig. 11. Desarrollo sucesivo de diferentes capas inorgánicas en la concha preseptal del Nautilus. |
Fig. 12. Sección media dorsoventral de la concha embriónica del Nautilus macromphalus en la etapa del primer septo (S1) y engarce del sifúnculo (Procedente de Tanabe, and Uchiyama, 1997). |
Fig. 13. Sección media dorsoventral de la concha embriónica del Nautilus belauensis en la fase de dos cámaras (Procedente de Landmam et al.1989. Se corresponde con el ejemplar de la Fig. 9). | Fig. 14. Sección en la concha del Nautilus belauensis en la fase de tres cámaras. Las líneas discontinuas señalan las partes fragmentadas y perdidas al efectuar el corte. (Procedente de Landmam et al.1989). |
En la discusión que realizan en su artículo, Landman et al. (1989) exponen que la concha del Nautilus sufre marcados cambios durante la embriogénesis, en particular indican que durante la etapa de dos y tres cámaras, en el fragmacono, las proporciones que acontecen entre el volumen de las cámaras septales y el de la cámara habitacional son pequeñas y difieren de las alcanzados en etapas ontogénicas posteriores, ello es debido a que la longitud de la cámara habitacional es mucho mayor en la primera etapa vital que en la fase juvenil y adulta. Sin embargo, el perfil de la concha sí se asemeja en todas las fases.
Con la base y los detalles aportados hasta ahora, nos surge el interrogante acerca de: ¿qué acontece con nuestro modelo cordobés uniforme (con igual forma durante todas las etapas vitales) del Nautilus —un modelo bien adaptado a nivel global y macroscópico, como ya hemos mostrado en detalle— si lo confrontamos con esa fase inicial, que biológicamente está indicada como diferenciada? Pues, de partida, lo que ocurre es que se inicia una nueva etapa investigadora, un nuevo camino que recorrer a hombros de estos gigantes biológos, antes explícitamente citados, y de otros muchos más omitidos por economia literaria, pero por supuesto no olvidados, y junto a los de numerosos gigantes matemáticos poder modestamente contribuir a la "Ontogenia matemática del Nautilus". ¡Avancemos, pues!
Para poder adentrarnos en este análisis y contraste, podemos aglutinar todo lo indicado en un recurso interactivo ( ver la escena interactiva 1) que nos permita tener una visión solapada comparativa y que ayude en la conceptualización de lo que acontece, es decir, partir de una agrupación de instantáneas para lograr extraer un continuo descriptivo matemático. Es obvio, de nuevo es necesario indicarlo aunque pueda ser reiterativo, que la superposición de las fotos anteriores mostrará variaciones, algunas debido a que proceden de diferentes ejemplares y especies de Nautilus, otras serán consecuencia de la variabilidad que intrínsecamente acontece en todo espécimen o individuo concreto dentro de las características comunes e identificadoras que comparten y que definen a esa especie; o quizás que estén generadas por posibles desviaciones angulares al realizar los cortes sobre la concha para obtener su sección o perfil. En definitiva, errores comunes e implícitos en cualquier estudio y que aquí, adicionalmente, se ven magnificados gracias a la amplificación visual que nos aporta la técnica. Pero en esa escena, si alguien tiene un empeño cuantificador especial, puede verificar ―con la regla interactiva que se dispone― que nos adentramos en variaciones en el entorno de la décima de milímetro. Estos son detalles con los que se ha de convivir y que han de ponderarse en su justa magnitud para lograr esa visión global y poder encuadrarse en la perspectiva de búsqueda de un modelo o patrón conceptual y así lograr encontrarlo.
A continuación puede interactuar con dicho recurso interactivo y podrá abordar, si lo desea, su investigación personal a través de las diferentes herramientas que ahí se incluyen:
Escena interactiva 1. El modelo cordobes uniforme del Nautilus (revisión)
Nuestra reflexión la dejamos reflejada en la siguiente presentación y puede también usarse como guía a reproducir en la escena interactiva anterior.
Así pues, el análisis realizado nos marca varias necesidades:
En definitiva, contemplamos y concluimos que es obvia la necesidad de abordar la citada "Ontogenia matemática del Nautilus"... Y a ello nos dedicaremos en el siguiente artículo. Para no impacientarse "juegue" con el recurso interactivo aportado y adéntrese en los artículos indicados en la bibliografía descrita.
MolluscaBase eds. (2021). MolluscaBase. Patella vulgata Linnaeus, 1758. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=140685 on 2021-08-22
Landman, N. H., Arnold, J. M. and Mutvei, H. 1989: Description of the embryonic shell of Nautilus belauensis. American Museum Novitates, no. 2960, p. 1–16.
Mutvei, H. and Doguzhaeva, L. 1997: Shell ultrastructure and ontogenetic growth in Nautilus pompilius L. (Mollusca: Cephalopoda). Palaeontographica Abteilung A Palaeozoologie–Stratigraphie, vol. 246, p. 33–52.
Sasaki, T., Shigeno S. & Tanabe K. 2010. Anatomy of living Nautilus: Reevaluation of primitiveness and comparison with Coleoidea (2010) in Tanabe, K., Shigeta, Y., Sasaki, T. & Hirano, H. (eds.) 2010. Cephalopods - Present and Past, Tokai University Press, Tokyo, p. 35-66.
Saunders, W. B., and N. H. Landman (eds.) 2010. Nautilus: the biology and paleobiology of a living fossil. (Springer. First edition New Y 1987) Plenum Press, New York.
Tanabe K. & Uchiyama, K. 1997. Development of the Embryonic Shell Structure in Nautilus. The Veliger 40(3): 203-215.
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Hace unos años mostramos que la forma y el crecimiento del Nautilus, prototipo de belleza natural y matemática, era neta y completamente cordobés. No obstante, manteniéndose dentro de ese canon, el desarrollo no es uniforme en todas sus etapas vitales y, en particular, en su etapa inicial marca diferencias que son dignas de modelar. Así pues, nos planteamos trasladarles en varios artículos de este blog la ontogenia matemática del Nautilus y le mostraremos que en la primera etapa el modelo se corresponde con un patrón de dos espirales cordobesas con diferente polo y, sin embargo, en la etapa juvenil y adulta éstas comparten el mismo polo. Un mínimo detalle que hay que añadir al buen hacer matemático de este animalito y que da explicación a su acontecer vital, permiténdonos comprender nuevos detalles de su ser.
Quedan invitados a su lectura y quedamos deseosos de sus comentarios y observaciones
El Nautilus, usualmente catalogado como un fósil viviente ―si bien Ward (1984) lo encuadra en una estasis aparente[1]―, ha llamado siempre la atención no sólo por la belleza exterior de su concha, quizás no excesivamente destacable frente a la de otros moluscos, sino por aquella que esconde en su interior, ¡que es sorprendente!, y no deja indiferente a nadie. Por ello, ha sido ampliamente estudiada desde el punto de vista paleontológico, zoológico, biológico u ontogénico, pero también en el mundo artístico, el arquitectónico, el ingenieril, el físico-químico y, por supuesto, en el matemático. Incluso ha llegado a ser idealizada en estos entornos científicos, sin olvidar el contexto literario donde también se ha adentrado en lugares preminentes. Aupada como prototipo de belleza ha sido continuamente encajonada de manera forzada en el canon de belleza o proporcionalidad divina o áurea, a pesar de su resistencia y continuo grito de: ¡No!, ¡No soy áureo!, clamor que puede ser inaudible para legos, pero no debería serlo para eruditos. Más fácil hubiera sido haber creado la proporción nautílica, como referente o neotipo de belleza, que con rocambolescas maneras tratar de estirar, contraer o moldear su fina superficie calcárea, pues ello es una suerte imposible de lograr con tan frágil soporte.
En el artículo “Sobre la forma y el crecimiento cordobés del Nautilus pompilius” (Galo, Cabezudo y Fernández, 2016 a) detectamos y expusimos que la espiral logarítmica que se ajusta al perfil de la concha del Nautilus se corresponde con una espiral cordobesa (Fig. 1).
Fig. 1. Ajuste del Nautilus por una espiral logarítmica cordobesa (Galo et al. 2016 b).
Este hallazgo coyuntural que no deja de ser una mera coincidencia numérica, aunque para nosotros muy agradable, con la razón denominada cordobesa y que consecuentemente nos permite asociar su nombre al de Nautilus, hubiera quedado como una curiosidad anecdótica si no fuera porque ahí señalamos y detallamos (ver Fig. 2 y 3) que todo en el Nautilus se muestra cordobés ―sí, nosotros estuvimos silenciosos y atentos y le oímos decir: ¡Qué soy cordobé![2] (ver Fig. 4) ―:
Fig. 2. Espiral que aproxima perfil de la concha (azul), la de los septos (amarilla) y la que describe el polo de los arcos septales (magenta). |
Fig. 3. Detalle de la espirales sobre las que se aproximan los septos: perfil de la concha (azul ),septos (amarilla) y la que describe el polo de los septos (magenta). |
Fig. 4. El Nautilus es “cordobé”. |
Así pues, en el artículo citado ” (Galo, Cabezudo y Fernández, 2016 a) se buscó y se logró captar la esencia nautílica matemática a nivel conceptual global: “todo en el Nautilus se muestra cordobés”, y el modelo matemático que ahí se consideró fue único e indiferenciado en todo el crecimiento. Se aplicó la consideración de que dado que el crecimiento del Nautilus es gnomónico, es decir, que mantiene su forma cambiando su escala, se puede hacer una lectura atemporal esperando que el modelo sea aplicable en toda la fase vital desde su germen a su madurez. No obstante, esto, no es más que un útil deseo purista matemático que se mostrará débil para cualquier detenido observador que aborde su confrontación con la realidad, pues somos conscientes por experiencia vital personal que en el desarrollo de un ser vivo acontecen diferentes fases o etapas que introducen matices distintivos dentro de una esencia identificadora que permanece. Y siguiendo esta línea diversificadora, en este artículo lo que se persigue es abordar la ontogenia matemática del Nautilus, desde su periodo embrionario hasta la madurez y determinar cuál es el modelo matemático diferenciado en cada una de las etapas de crecimiento en correlación con los estudios biológicos micro y macroscópicos existentes. Y, de hecho, aquí veremos que se pueden diferenciar tres etapas que esencialmente se corresponden con cada uno de los tres verticilos (un verticilo es una revolución de 360° en el crecimiento en espiral de la concha de un molusco) que se contabilizan en la espiral de la concha de un ejemplar adulto, tres etapas que encierran ciertas diferencias y matices dentro del citado modelo cordobés global. Todo, sin olvidar y teniendo siempre presente, siendo conscientes, que cuando atravesamos el canal que enlaza la discreta yocto-yotta realidad, en la que vivimos, con la idealizada continuidad del mundo matemático siempre surgen interferencias (“aliasing”) que trataremos de mitigar y/o detallar, aunque hay que asumirlas.
La referencia zoológica de la que partiremos es: “Anatomy of living Nautilus: Reevaluation of primitiveness and comparison with Coleoidea” de Sasaki, Shigeno & Tanabe (2010) donde, aportando unas magníficas fotografías, se aborda una revisión de la anatomía del Nautilus, que si bien se centra principalmente en los órganos y partes blandas, incluye también información sobre la forma embrionaria de la concha. Adicionalmente, en la introducción de ese artículo los autores detallan la literatura más significativa al respecto comenzando con el libro de Saunders and Landman (1987) que compila el conocimiento sobre el Nautilus hasta ese año y que posteriormente ha sido actualizado en la edición de 2010. Ladman et al. (1989) analizan la concha en el periodo embrionario y muestran su desarrollo hasta el tercer septo, estudio que se complementa en Mutvei and Doguzhaeva (1997), donde se muestran las curiosas depresiones dorsales septales en el segundo verticilo, y en Tanabe and Uchiyama (1997). Estos artículos nos servirán de soporte, guía y verificación en nuestro análisis matemático. También el modelo virtual tridimensional e interactivo de la concha del Nautilus del “D’Arcy Thompson Zoology Museum”, obtenido mediante escáner, es una magnífica fuente de observación visual interactiva, si bien hay que tener presente y es ostensible que el corte del ejemplar que se ha usado para su digitalización no coincide con el plano medio de simetría. Pueden consultarse otros modelos tridimensionales en Sketchfab.
Modelo tridimensional de la sección de la concha de un Nautilus pompilius. | |
Nautilus Shell (sectioned) by University of Dundee Museum Collections on Sketchfab |
Cortes por planos paralelos al plano medio obtenidos por González-Restrepo (2019) a partir del modelo 3D del Museo Dundee. |
Landman et al. (1989) exponen que la forma de la concha del Nautilus sufre marcados cambios durante la embriogénesis y que los perfiles en la etapa de dos y tres cámaras difieren de los alcanzados en etapas ontogénicas posteriores. En nuestro artículo (Galo et al., 2016 a) ya pusimos de manifiesto (Fig. 5) que en el primer verticilo se contabilizaban ocho cámaras, frente a las dieciséis del segundo, es decir, cambia el paso interseptal teórico que en un primer momento es π/4 y posteriormente pasa a ser π/8. Este paso se mantiene también en el tercer verticilo, si bien en esta fase adulta pueden acontecer ciertos cambios morfológicos que influyen en los últimos septos y ése paso puede ser algo menor. En la imagen de la fig. 5 son ocho los septos en el tercer verticilo, pero este número es variable. A pesar de indicar estas diferencias, allí, optamos por presentar un modelo matemático teórico uniforme considerando un crecimiento idéntico en toda la vida del animal y ello permitió fijar los comportamientos globales antes citados como que el sifúnculo sigue el eje de simetría topológico de la cámara habitacional o que los polos de los septos se ubican en la espiral mediana, propiedades que ahora, en un proceso inverso, nos serán de utilidad para analizar y comprender lo que acontece en ese diferenciado primer verticilo. Y ese estudio es el que abordaremos en esta sección donde nos detendremos en la fase embrionaria precameral, en la fase de formación de las primeras cámaras y en lo que acontece en el resto de este primer verticilo.
Fig. 5. Recuento de verticilos y cámaras en el Nautilus. |
En el análisis de ese primer verticilo nos adentraremos en un próximo artículo de este blog... no tardará en llegar.
[1] “Rather than being a prime example of a living fossil, the nautiloids may be examples of rapidly speciating organisms that change only slightly during each event, and return to the same form over and over. The result would be apparent stasis, but the actual history would be similar to that of any other rapidly speciating group-except that the net morphologic change over time would be small, rather than large” (Ward, 1984).
[2] En Córdoba (España) la pronunciación de las eses a final de palabra suele ser muy débil y para los oídos no habituados a esa tonalidad, éstas quedan como omitidas.
Galo J.R., Cabezudo A. y Fernández I.(2016 a) : Sobre la forma y crecimiento cordobés del Nautilus Pompilius. Epsilon, 2016, Vol. 33 (3), nº 94.
Galo J.R., Cabezudo A. y Fernández I.(2016 b) : Recurso interactivo Sobre el crecimiento cordobés del Nautilus Pompilius. Red Educativa Digital Descartes.
González-Restrepo, F. (2019): Cortes del Nautilus a partir de la digitalización 3D del museo Dundee. Red Descartes Colombia.
Landman, N. H., Arnold, J. M. and Mutvei, H. 1989: Description of the embryonic shell of Nautilus belauensis. American Museum Novitates, no. 2960, p. 1–16.
Mutvei, H. and Doguzhaeva, L. 1997: Shell ultrastructure and ontogenetic growth in Nautilus pompilius L. (Mollusca: Cephalopoda). Palaeontographica Abteilung A Palaeozoologie–Stratigraphie, vol. 246, p. 33–52.
Sasaki, T., Shigeno S. & Tanabe K. 2010. Anatomy of living Nautilus: Reevaluation of primitiveness and comparison with Coleoidea (2010) in Tanabe, K., Shigeta, Y., Sasaki, T. & Hirano, H. (eds.) 2010. Cephalopods - Present and Past, Tokai University Press, Tokyo, p. 35-66.
Saunders, W. B., and N. H. Landman (eds.) 2010. Nautilus: the biology and paleobiology of a living fossil. (Springer. First edition New Y 1987) Plenum Press, New York.
Tanabe K. & Uchiyama, K. 1997. Development of the Embryonic Shell Structure in Nautilus. The Veliger 40(3): 203-215.
Ward P. (1984) Is Nautilus a Living Fossil?. In: Eldredge N., Stanley S.M. (eds) Living Fossils. Casebooks in Earth Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8271-3_31
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Sistemas de evaluación para estudiantes: un análisis sobre pruebas estandarizadas
Sección: iCartesiLibri
Bloque: Ciencias humanas y sociales
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autor: Sandra Milena Marín Restrepo, Jhon Alfer Rúa Vergara, Jhobana Herrera Diaz y Juan Guillermo Rivera Berrío
Editorial: Red Educativa Digital Descartes
ISBN:978-84-18834-00-4
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
Haz clic para ver un vídeo divulgativo
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Física Mecánica
Sección: iCartesiLibri
Bloque: Física
Unidad: Mecánica
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autor: José Ricardo Del Río Quimbayo
Colaboradores: Marco Tulio Mesa Cardona y Jaime Humberto Ramírez Rios
Diseño del libro: Juan Gmo. Rivera Berrío
ISBN: 978-958-52963-6-7
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Transformo mi función
Sección: Miscelánea
Bloque: Cálculo
Unidad: Operaciones con funciones
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autor: José R. Galo Sánchez
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Transformaciones de funciones
Sección: Miscelánea
Bloque: Cálculo
Unidad: Operaciones con funciones
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autor: José R. Galo Sánchez
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Funciones trascendentes
Sección: Miscelánea
Bloque: Cálculo
Unidad: Funciones elementales
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autor: José R. Galo Sánchez
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Análisis Matemático para Bachillerato
Sección: iCartesiLibri
Bloque: Análisis Matemático
Unidad: Funciones, límites, derivación e integración
Nivel/Edad: 2º Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autores:
José R. Galo Sánchez y María José García Cebrian
ISBN: 978-958-52963-7-4
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional