Este mes vamos a ver un vídeo sobre las ecuaciones e inecuaciones de 4ºESO Enseñanzas aplicadas:
Hemos tratado los siguientes puntos:
1.Ecuaciones
Elementos de una ecuación
Solución de una ecuación
2.Ecuaciones de primer grado
Solución
Aplicaciones
3.Ecuaciones de segundo grado
Solución
Incompletas
Número de Soluciones
Aplicaciones
4.Otros tipos de ecuaciones
Bicuadradas
Tipo (x-a)·(x-b)·...=0
Ensayo-error. Bisección
5.Inecuaciones con una incógnita
Definición. Propiedades
Inecuaciones de grado uno
Inecuaciones de grado dos
La materia de Matemáticas Orientadas a las Enseñanzas Académicas se distribuye a lo largo de tercero y cuarto de Educación Secundaria Obligatoria en cinco bloques que no son independientes entre sí : Procesos, métodos y actitudes en Matemáticas, Números y Álgebra, Geometría, Funciones y, por último, Estadística y Probabilidad.
Entre los contenidos de este bloque se contempla la utilización de medios tecnológicos en el proceso de aprendizaje, entre otros para:
A su vez, en los criterios de evaluación para este bloque aparece emplear las herramientas tecnológicas adecuadas, de forma autónoma, realizando cálculos numéricos, algebraicos o estadísticos, haciendo representaciones gráficas, recreando situaciones matemáticas mediante simulaciones o analizando con sentido crítico situaciones diversas que ayuden a la comprensión de conceptos matemáticos o a la resolución de problemas. CMCT, CD, CAA.
También se dice utilizar las tecnologías de la información y la comunicación de modo habitual en el proceso de aprendizaje, buscando, analizando y seleccionando información relevante en Internet o en otras fuentes, elaborando documentos propios, haciendo exposiciones y argumentaciones de los mismos y compartiendo éstos en entornos apropiados para facilitar la interacción. CCL, CMCT, CD, CAA.
Más específicos aún son los estándares de aprendizaje evaluables, donde se recoge:
12.1. Elabora documentos digitales propios (texto, presentación, imagen, video, sonido,…), como resultado del proceso de búsqueda, análisis y selección de información relevante, con la herramienta tecnológica adecuada, y los comparte para su discusión o difusión.
12.2. Utiliza los recursos creados para apoyar la exposición oral de los contenidos trabajados en el aula.
12.3. Usa adecuadamente los medios tecnológicos para estructurar y mejorar su proceso de aprendizaje recogiendo la información de las actividades, analizando puntos fuertes y débiles de su proceso académico y estableciendo pautas de mejora.
DESCRIPCIÓN DE LA EXPERIENCIA |
Esta iniciativa, desarrollada desde el Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija, durante el curso escolar 2016/2017 con un grupo de 4º ESO del área de Matemáticas Orientadas a las Enseñanzas Académicas, se ha coordinado desde el aula virtual de Matemáticas, que tiene acceso para invitados, donde se fueron publicando, paulatinamente, las distintas fases con las correspondientes instrucciones para el alumnado. Así, con la pregunta ¿Qué tienes que hacer?, se decía que el reto a superar consiste en generar contenido audiovisual de Matemáticas. Concretamente, tienes que grabar un vídeo en el que se ejecute y explique la resolución de dos ejercicios sobre fracciones polinómicas.
El primero deberá ser simplificar una fracción polinómica, y se extraerá de la página "Para practicar", seleccionando la opción simplificar fracciones. Tienes que escoger una fracción que tenga segundo grado tanto en el numerador como en el denominador.
El segundo tratará sobre operaciones con fracciones polinómicas, pudiendo elegir entre sumar, restar, multiplicar o dividir, y será extraído de la página "Fracciones algebraicas" del libro Descartes.
Para ello, estableceremos distintas etapas o fases.
PRIMERA FASE |
La clase se organizará en equipos constituidos por dos personas, actuando una de ellas como coordinador o coordinadora del equipo que, además, deberá llevar el nombre de un personaje matemático, hombre o mujer.
Será el coordinador o coordinadora la persona encargada de entregar las tareas en las distintas fases y en los plazos establecidos.
SEGUNDA FASE |
Comienza la fase de investigación y documentación, así que te propongo algunas sugerencias y te recomiendo espacios y recursos. Por ejemplo:
Necesitas un guion para tu película, con lo que vas a grabar y a decir, pudiendo alternar planos de lo que se visualiza en el ordenador, tableta o smartphone con planos de la ejecución técnica del ejercicio, es decir, el desarrollo con las fórmulas y operaciones. Puedes realizar los ejercicios en una pizarra, en un cuaderno o folio, con un software que lo permita, grabando en interior o en exterior y, por supuesto, todo lo que se te ocurra. Aquí es donde entra en juego tu creatividad e imaginación.
Recuerda que tú no eres el protagonista de la película, sino la resolución del ejercicio, por lo que no es necesario que aparezcas ni que se te vea.
En cualquier caso, se debe ver y oir cómo se elige el ejercicio desde el libro digital del Proyecto Descartes, comprobando después la solución en el mismo libro y usando, además, una de las dos herramientas que hemos aprendido en clase, es decir, Wiris Calc o Photomath, o incluso ambas.
Recuerda que publicaremos en internet el producto final, así que procura la mejor calidad de imagen y audio posibles.
El lenguaje matemático será primordial para las explicaciones, por eso, me enviaréis, desde el foro "Entrega del guion", el borrador del guion para que yo pueda revisarlo.
No puedes usar ni imágenes ni música con derechos de autor. Para estos casos, te recomiendo:
En cualquier caso, hay que citar en el vídeo el lugar de procedencia de las imágenes y audios usados.
Deberá aparecer en el vídeo, ya sea al final o al principio, el logotipo del IES Bajo Guadalquivir.
En cualquier caso, hay que dedicar una página de créditos para citar en el vídeo el lugar de procedencia de las imágenes y audios usados.
Si tienes alguna idea y no sabes cómo llevarla a efecto, puedes consultar en el foro del aula virtual denominado "Dudas sobre la segunda fase".
¡Es el momento de la CREATIVIDAD E IMAGINACIÓN!
TERCERA FASE |
Para entregar el vídeo puedes usar un servicio gratuito para envío de archivos de gran tamaño. Si no conoces ninguno, te recomiendo WeTransfer.
Cuando la página te avise que se ha concluído la transferencia, me envías un mensaje por la plataforma para que me lo descargue. Así quedará constancia de haber entregado el vídeo en su plazo y me llegará un aviso a mi correo para que me descargue vuestra obra.
Para evaluar el producto final se tendrán en cuenta las siguientes variables:
La experiencia ha resultado sumamente satisfactoria y quiero felicitar desde el portal de RED Descartes al equipo Sophie Germain por la calidad del producto final conseguido.
Dentro del estudio de los lugares geométricos tienen un especial interés los relativos a las cónicas por motivos muy diversos y no únicamente cronológicos; si no que también filosóficos, mercantilísticos y geométricos y en esta entrada vamos a continuar la aproximación a su conocimiento genérico analizando algunos aspectos de la Hipérbola considerada como lugar geométrico. Aprovechamos la oportunidad para señalar el aspecto popular, lúdico y funcional que la Geometría clásica ha ejercido sobre las poblaciones cultas: el cono como cucurucho para envolver desde tiempos ancestrales, los niños y niñas jugando con el aro y el yoyo...
Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Curriculum para ESO y Bachillerato.
Ambos trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.
En ambas escenas los pulsadores k y a o el botón anima, generan el l.g. (hipérbola).
Continuamos animando a conocer el editor DescartesJS. Exponemos, en esta ocasión, la adaptación a DescartesJS de una Unidad realizada por el profesor Antonio Caro Merchante
Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Hipérbola, primero como el l.g. creado por los dos puntos intersección de las circunferencias con centro en los focos y radios variables y en segundo lugar el l.g. generado por un punto cuando otro se desplaza por una circunferencia.
La Hipérbola. Método I.
hoja de trabajo de la hipérbola (I)
La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método.
La Hipérbola. Método II.
Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
Esta vez en la sección de vídeo hemos elegido uno que muestra la creación, paso a paso, del lugar geométrico que define a la hipérbola.
Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
Esta semana presentamos una actividad de introducción a las funciones que forma parte del proyecto iCartesiLibri.
Este proyecto consta de libros dinámicos e interactivos centrados en el aprendizaje autónomo y competencial del estudiante. Los materiales de este proyecto abarcan diferentes áreas de conocimiento.
En este caso hemos seleccionado un objeto de aprendizaje dedicado a la determinación del dominio y rango de una función.
Este mes vamos a ver una unidad de 1ºESO correspondiente a números decimales. Veamos al vídeo:
En este vídeo hemos visto los siguientes puntos:
1.Números decimales
Numeración decimal
Orden y aproximación
Representación
2.Operaciones
Suma y resta
Multiplicación
División
3.Sistema Métrico Decimal
Longitud
Capacidad
Peso
Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de las curvas Cónicas no degenaradas, esto es: de la circunferencia, la Elipse, la Parábola y la Hipérbola consideradas como lugares geométricos. Curvas estas resultantes del trabajo de observación y posterior interpretación geométrica de la relación entre el ser humano y la naturaleza, por parte de los sabios griegos clásicos. En esta ocasión estudiaron la incidencia, en el cono de la visión ocular, de las ondas visibles, con objeto de establecer los principios teóricos del conocimiento de las formas y los colores.
Es de interés recordar que estas curvas están entre las primeras que fueron estudiadas y descritas.
Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos los que se enlazan a continuación.
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado o adaptado, con DescartesJS, las misceláneas que se exponen a continuación. Queremos notar la intención didáctica de dichos trabajos en los que se condensan una buena cantidad de los conceptos elementales de Geometría del Curriculum.
Tanto en esta como en la siguiente miscelánea el pulsador k controla la generación del l.g.
A continuación exponemos la adaptación a DescartesJS de la miscelánea realizada por el profesor Antonio Caro Merchante como ilustración de la contundencia didáctica del uso interactivo de una utilidad simple, que muestra de forma palpable un único concepto, como la enlazada a continuación.
propiedad de los puntos de la elipse
Las miceláneas siguientes, que abordan algunas situaciones de tangencia, son también consecuencia directa del trabajo del profesor Caro Merchante.
Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Elipse, primero como el l.g. creado por los dos puntos intersección de las circunferencias con centro en los focos y radios variables y en segundo lugar el l.g. generado por un punto de un segmento cuando dicho segmento se desliza por dos rectas perpendiculares.
La Elipse. Método I.
hoja de trabajo de la Elipse (I)
La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método.
La elipse. Método II.
Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
Esta vez en la sección de vídeo hemos elegido uno que muestra la deducción, paso a paso, de la ecuación del lugar geométrico que define a una curva cónica.
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017