Valora este artículo
(4 votos)
Los juegos que permiten cargar preguntas a través de un fichero, tienen un repositorio propio en el que se pueden guardar dichas preguntas y ser utilizadas en el mismo. Para utilizar dicha opción, deberemos tener el juego descargado en nuestro equipo y utilizar un navegador como Firefox que permite la lectura de ficheros del equipo local.
 
Para utilizar ficheros de preguntas utilizando este repositorio se deben seguir los siguientes pasos:
  1. Guardar el fichero de preguntas en la carpeta del juego que tenemos en nuestro ordenador en la siguiente ruta del juego: contenidos/subida/ficheros/
  2. En la carpeta contenidos/subida/ hay un fichero de texto llamado lista.txt. Se deberá abrir dicho archivo y escribir el nombre del nuevo fichero de preguntas que hemos añadido.
Ahora, en la pantalla de Selección del fichero de preguntas, aparecerá el nombre del fichero que hemos cargado en el menú desplegable Repositorio del juego.
 
Valora este artículo
(35 votos)

Con motivo de la gravísima situación que estamos sufriendo, las autoridades educativas instan a los centros a adoptar las medidas que consideren más adecuadas para garantizar la continuidad de los procesos de enseñanza-aprendizaje a través de tareas y actividades que puedan ser desarrolladas por el alumnado en sus domicilios, utilizando los medios de comunicación electrónicos establecidos o acordados entre el alumnado y el profesorado, como pueden ser entornos virtuales de aprendizaje. Ahora bien, como manifiesta Fernando Trujillo en Twitter, cuya opinión comparto, no debemos empezar buscando la herramienta de comunicación, sino qué información daremos a nuestro alumnado, qué deben desarrollar con ella, cómo deben hacerlo y cómo los evaluaremos, en su caso. Particularmente, y es lo que haré en estos días, recomiendo usar las herramientas de intercomunicación que venimos empleando durante el curso, indicando a nuestro alumnado, día a día, todos los aspectos que menciona Fernando.

Superadas estas decisiones iniciales, obviamente necesitaremos recursos especialmente diseñados para la enseñanza a distancia y, con todos mis respetos a otras alternativas, los que mejor reúnen estas características son los libros interactivos del Proyecto ED@D, que fueron diseñados por el CIDEAD, Centro para la Innovación y Desarrollo de la Educación A Distancia, organismo dependiente del Ministerio de Educación, con el objetivo de atender "a los ciudadanos españoles en el exterior y a aquellas personas que, aun residiendo en territorio nacional, se ven imposibilitadas para recibir enseñanza a través del régimen ordinario", a pesar de encontrarse en edad de escolarización obligatoria.

Por diseño, se trata de un material interactivo autosuficiente, proporcionando tanto las convenientes explicaciones teóricas como un número suficiente de actividades y ejercicios en los que la introducción de semillas aleatorias aportan diferentes instancias de los mismos, permitiendo practicar a la medida de las necesidades de cada cual, ya que van acompañadas de correcciones automáticas. Consecuentemente se promueve el objetivo de “aprender a aprender”, se refuerza la autonomía personal y el adecuado desarrollo competencial.

En base a estos supuestos, cada unidad consta de seis secciones, cuyos detalles pueden consultarse en la página del proyecto, bajo los epígrafes: Antes de empezar, Contenidos y resumen, Ejercicios para practicar, Autoevaluación, Para enviar al tutor y Para saber más, disponiendo de versiones para las distintas materias de Matemáticas en la ESO en castellano, catalán y gallego.

edad castellano

edad catalan

edad galegoEn caso de necesidad, ofrecemos tutoriales con los detalles concretos de cada unidad y el procedimiento para insertar estos y otros recursos en un aula Moodle.

La Organización No Gubernamental RED Descartes viene ofreciendo, desde hace casi siete años, recursos educativos abiertos para todas las etapas educativas durante 24 horas al día y los 365 días del año, de forma completamente altruista, queriendo aportar nuestro granito de arena en estos tiempos tan difíciles. Por ello, elaboramos y difundimos este especial artículo con resumen y acceso a todos los recursos disponibles.

 

 

Viernes, 13 Marzo 2020 01:08

Calculando porcentajes. Misceláneas

Escrito por
Valora este artículo
(6 votos)

En este artículo presentamos dos unidades del proyecto Misceláneas con ejercicios de porcentajes e intereses.

Misceláneas es un subproyecto de la Red Educativa Digital Descartes que contiene unidades independientes que tratan diferentes aspectos del currículo de matemáticas y que se pueden utilizar como complemento al estudio de distintos conceptos matemáticos. En este caso hemos seleccionado las unidades: Descuentos y recargos simples y porcentajes encadenados y BANCOS. Interés simple y compuesto.

Estas dos escenas interactivas son un recurso útil para el profesorado ya que en ellas se proponen múltiples ejercicios con autocorrección para practicar porcentajes y, por sus características, adecuados a todos los niveles de secundaria, ya sea de ampliación en los primeros cursos o bien de consolidación y refuerzo en cursos superiores.

En el siguiente vídeo se muestra con detalle la tipología de los ejercicios propuestos en estas escenas. También se propone un ejemplo de aplicación en un curso Moodle sobre el tema de proporcionalidad para segundo de la ESO. En primer lugar se ha insertado la unidad temática proporcionalidad del proyecto ed@d y como complemento se han añadido las dos unidades de porcentajes e intereses. De la misma forma, para completar el tema, se podrían incorporar en el aula virtual otras actividades y tareas sobre proporcionalidad.

 

Viernes, 06 Marzo 2020 00:00

El paralelogramo de Newton

Escrito por
Valora este artículo
(12 votos)

El "triángulo de Pascal o de Tartaglia" es ampliamente conocido tanto por las curiosas propiedades que en él pueden encontrarse como por su aplicación en el desarrollo algebraico de la potencia de un binomio. Suele aprenderse ligado a lo que usualmente se enseña con el nombre de "binomio de Newton" y que se identifica con la potencia de un binomio cuyo exponente es un número natural. Pero quien enunció o al menos divulgó este desarrollo particular, relacionándolo con ese triángulo, fue Pascal y de ahí que se denomine a dicho triángulo con su nombre. No obstante, el "triángulo de Pascal" ya era conocido, siglos antes, por matemáticos persas y chinos. Según Maor (1994) la aportación concreta de Newton en el contexto del desarrollo binomial se sitúa en el caso del desarrollo con  exponentes racionales y con exponentes enteros y únicamente llegó a conjeturarla sin llegar a abordar o al menos divulgar su demostración. Actualmente este resultado es un caso particular del denominado "Teorema binomial".

Newton abordó la extensión del triángulo de Pascal efectuando un cálculo hacia atrás, de manera que se mantuviera la misma propiedad recursiva de que un elemento de una fila sea el resultado de la suma de dos de la fila anterior siguiendo la propiedad que se verifica entre los números combinatorios.

propiedad números combinatorios 

Con esta extensión recursiva en sentido inverso, Newton construye nuevas filas, cada una de las cuales tiene infinitos números y cuya escritura conduce a la forma de un "paralelogramo" (o si se desea puede mostrarse, en particular,  como un rectángulo) y cada una de ellas puede asociarse a filas que se corresponderían con números "combinatorios" cuyo índice superior serían números enteros negativos.

paralelogramo de Newton

A su vez, Newton hace corresponder los números ubicados en cada fila con los coeficientes del desarrollo de la potencia de un binomio cuyo exponente ya no sólo sería un número natural, sino que en general puede ser un número entero. Y, consecuentemente, a todos los números del paralelogramo de Newton los denominaremos coeficientes binomiales (pierde sentido asociarlo con el número de combinaciones). El desarrollo del binomio conduce a un número finito de sumandos cuando el exponente es natural e infinitos (una serie) cuando es un entero negativo.

 extension del desarollo binomial a exponentes enteros

En la miscelánea "Extensión del triángulo de Pascal: El paralelogramo de Newton" se muestran los coeficientes binomiales de dicho paralelogramo. Pulsando el botón "indicaciones" de este recurso se pueden consultar algunos detalles adicionales. 

paralelogramoNewton2

Pulsa sobre la imagen para abrir la escena

La representación de dicho paralelogramo numérico entraña dos dificultades principales a medida que se incrementa la cantidad de números a visualizar. Por un lado, el espacio que necesita ocupar la escritura de cada coeficiente binomial que progresiva y rápidamente va aumentando, al ser mayor el número de cifras que lo constituyen. Y, por otro, el tiempo de cálculo necesario para ubicar, desplazar y representar en la tabla dichos coeficientes y para poder escalarla (si se desea). Adicionalmente, el cálculo de los coeficientes conduce a números enteros que superan el número designado como MAX_SAFE_INTEGER y que en javascript es 253-1 (algo superior a 9 mil billones); así pues, en esos casos no se refleja el coeficiente y se colorea la casilla donde iría ubicada con un fondo rojizo.  

En dicha escena se pueden visualizar, mediante colores, pautas geométricas de cómo se distribuyen dichos coeficientes cuando se plantean congruencias numéricas respecto a un divisor y resto seleccionado. No obstante, estas distribuciones pueden observarse mejor si no se muestran los valores de los coeficientes y ello es lo que se aborda en la miscelánea: "Congruencias en el paralelogramo de Newton"

 pNcolor

Pulsa sobre la imagen para abrir la escena

En este caso (ver las indicaciones incluidas en la miscelánea) la dificultades siguen centrándose en el espacio necesario para representar el paralelogramo cuando el número de filas y columnas considerado es elevado, pero al no reflejarse el número en sí, cada uno de estos coeficientes ocupa el mismo espacio y puede escalarse hasta el extremo de que ocupe un único píxel. Por otro lado, el cálculo de las congruencias puede hacerse de manera recursiva sin necesidad de calcular el coeficiente y consecuentemente no se ve afectado por lo indicado sobre el máximo entero admisible en javascript. Obviamente, las necesidades computacionales son elevadas y, por defecto, en la escena se ha limitado el número de filas y columnas a 400, pero editando la escena puede cambiarse.

Para evitar que cada interesado tenga que dedicar tiempo en la generación de las imágenes de las congruencias, he preparado un muestrario de consulta para las congruencias con los números primos hasta el treinta y uno, representando los coeficientes binomiales de índice superior en el rango desde -999 a 999 y de índice inferior de 0 a 999. Éste está accesible en la miscelánea: "Muestrario de congruencias en el paralelogramo de Newton", pudiéndose ampliar las imágenes ahí incluidas.

R7 0 

Pulsa sobre la imagen para abrir la escena

En un próximo artículo en este blog, mostraré que si retomamos el esquema organizativo original que Pascal (Traité du triangle arithmétique, 1665) utilizó al presentar y analizar las propiedades de este triángulo numérico, entonces los patrones de las congruencias que se observan en él son mas fáciles de identificar y pautar, y la extensión de estos a los coeficientes binomiales con índice superior un entero negativo se realiza de manera trivial.

Finalmente, quienes deseen aplicar los coeficientes binomiales y practicar con el desarrollo algebraico de potencias de un binomio pueden usar las siguientes misceláneas:

Ejercicios de desarrollo algebraico usando el "Binomio de Newton"

ejerciciosBinomio

Pulsa sobre la imagen para abrir la escena

Ejercicios del "binomio de Newton" con exponente entero

ejerciciosBinomioExponenteEntero

Pulsa sobre la imagen para abrir la escena

Página 6 de 124

SiteLock

Módulo de Búsqueda

Palabras Clave

Titulo

Categoría

Etiqueta

Autor

Acceso

Lo más leído de lo publicado hace un mes

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information