Hay una tendencia a tratar de asociar o encontrar en todo aquello que es bello la proporción áurea o divina, o a construir objetos a partir de esta razón porque se presuponen serán apreciados como bellos por el simple hecho de seguir dicha pauta. Esto, como no, también ha acontecido con la modelación matemática de la concha del Nautilus pompilius sobre la que suele afirmarse que su forma y crecimiento es áureo. Sin embargo, en este artículo se muestra y se analiza en detalle cómo dicha concha lo que realmente sigue es un patrón ubicado en la denominada proporción cordobesa o humana. Con apoyo en un recurso interactivo desarrollado con la herramienta Descartes se motiva el análisis y comportamiento y se procede a partir de la yocto-yotta realidad observada a construir el modelo matemático, el cual se detalla ampliamente.
Pulsando sobre la siguiente imagen se accede a dicho recurso interactivo que se aborda o plantea en seis fases:
|
En cada fase se dispone de un botón de información que, al pulsarlo, da acceso a un detalle de las propiedades que pueden inducirse a partir de la interacción con la escena. |
![]() |
Y en el botón de indicaciones se aborda una introducción, los objetivos, las instrucciones de uso en cada fase y finalmente se enlaza un artículo donde se detalla el análisis matemático realizado. Este artículo está embebido a continuación o bien puede abrirse y/o descargarse desde este enlace. |
En las conclusiones del artículo anterior afirmamos:
A través del detallado y progresivo análisis realizado hemos ido construyendo la base teórica o modelo matemático que soporta a la bella morfología del Nautilus Pompilius y hemos tratado del encontrar el modelo de crecimiento que conduce a poder explicar y a comprender por qué adquiere esa forma. Desde su inicio la espiral logarítmica cordobesa tomó presencia y a medida que la mirada se deslizaba hacia algún nuevo detalle esta espiral ha vuelto a imponer su presencia marcándonos y alumbrándonos el camino del descubrimiento y de la adquisición del conocimiento. La belleza del Nautilus pompilius se sustenta en la proporción cordobesa o humana y todo punto de su concha o del interior ha quedado determinado por la intersección de dos espirales cordobesas. El germen o base inicial matemática que explica el por qué acontece todo lo observado, se ha ubicado en el crecimiento gnomónico de un triángulo cordobés, las propiedades de éste se trasladan al desarrollo y comportamiento global detectado y modelado.
Deseamos que nuestro trabajo de investigación satisfaga tu curiosidad y te animamos a interactuar con nosotros bien realizando algún comentario en este blog (los comentarios no se publicarán directamente sino que pasan por una moderación previa a su publicación) o bien escribe al correo de nuestra RED Descartes: descartes@proyectodescartes.org.
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.
Como muestra enlazamos la unidad sobre Probabilidad, del subproyecto TELESECUNDARIA,
la GEOevaluación de Francia.
y los cinco ejemplos de plantillas transparentes, de los que enlazamos el primero.
Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D en particular los materiales de 2º y 4º LOMCE y LOE y la experiencia: Aprendemos a resolver problemas con Descartes y Wiris
Aprendemos a resolver problemas con Descartes es una iniciativa del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija, realizada con alumnos y alumnas de 4º ESO durante el curso escolar 2015/2016, basada en la experiencia para el "Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes"
Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el primero de los métodos para duplicar un cubo, esto es, dado un cubo de arista a y volumen V halla, mediante la Duplicatriz de Hipócrates, un segmento de longitud a'= a·21/3 que será la arista del cubo de volumen V' = 2·V.
La escena, en primer lugar, construye dinámicamente la curva duplicatriz pulsando en el botón , en el momento en que la recta MA corta a la recta PO (M = C y A = B) se activa el botón de información que al pulsarlo deja ver un breve texto con la definición del l.g. y una demostración, que usa la construcción de Platón, del hecho de la duplicidad. En cualquier instante puede detenerse la animación mediante el botón
.
La escena es facilmente adaptable y admite las modificaciones y/o ampliaciones que el usuario considere convenientes para su uso personal.
En el siguiente trabajo se muestra la forma en que se genera el l.g. conocido como Cisoide de Diocles y la manera de encontrar con dicha curva el segmento que sirva de arista al cubo que doble en volumen a uno inicial dado.
En esta ocasión, en la sección de vídeo, hemos elegido la primera parte del que se ha mostrado en las últimas entradas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Cornu" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Cornu incluida.
En el siguiente trabajo realizado con GeoGebra, al activar la animación puede observarse como se genera el lugar geométrico conocido como curva Duplicatriz. En primer lugar se obtienen las dos medias proporcionales, propuestas por Hipócrates, entre dos segmentos de longitudes a y 2·a, donde a es la longitud de la arista del cubo inicial. A continuación la curva determina el segmento que se usará de arista del cubo de volumen doble al primero. Para la demostración se usa la composición de triángulos rectángulos semejantes atribuida a la escuela platónica.
De los recursos de la web de GeoGebra hemos tomado como origen para el análisis de las características de la aproximación polinómica de las integrales de Fresnel el "material-956849" y entre otras hemos encontrado ocurrencias como las que se exponen a continuación, que se ponen en evidencia pulsando el botón 'GO'.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo
Proyecto Descartes estuvo invitado al programa Boulevard de Radio Euskadi en su emisión del día 25 de agosto, para tratar el tema de la radio ficción en la divulgación de personajes matemáticos.
Boulevard es un programa que reúne, desde las 6:00, información y análisis de la información de Euskadi y el mundo, mientras que a partir de las 10:00 el espacio se dedica a la actualidad más cercana y a los temas que nos interesan.
En la imagen superior hay un enlace a la página del programa en su totalidad, mientras que compartimos el audio con la entrevista dedicada a la asociación Red Educativa Digital Descartes o Proyecto Descartes, agradeciendo a Radio Euskadi y al programa Boulevard su difusión y la posibilidad de acceder a su contenido.
Recordamos que "El personaje misterioso" es un programa de Radio Descartes conducido por Eva Perdiguero y Ángel Cabezudo con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Concretamente, tras la entrevista del invitado, que no se desvela, el escuchante debería conocer su nombre o bien tomar los datos que se aportan en la dramatización y tomarse un tiempo para averiguarlo consultando en la múltiple documentación que hoy día se encuentra disponible, principalmente en Internet o en libros divulgativos de Historia de las Matemáticas o de Matemáticos célebres, pasando a responder en un comentario del blog de nuestro portal. A la semana siguiente, se publica un puzle creado con Descartes JS que incluye imágenes alusivas, alegóricas o de efemérides que descubren al personaje.
Hasta la fecha se han realizado un total de doce entrevistas ficticas a personajes matemáticos, que enlazamos junto a su intérprete:
Hay que recordar también que "El personaje misterioso" resultó finalista en la categoría de Mejor Iniciativa Educativa a los V Premios Asociación Podcast, entregados en Barcelona en 2014.
Por último, y como anunciamos al final de la entrevista del programa Boulevard de Radio Euskadi, añadir que esta iniciativa se ha extrapolado al entorno educativo de Secundaria, de manera que son ya alumnos y alumnas de 3º ESO los encargados de realizar entrevistas a personajes matemáticos, como iremos difundiendo en próximos artículos donde las divulgaremos.
Ya puedes "pinear" los recursos digitales interactivos y seguir los tableros de RED Descartes en Pinterest, pudiendo acceder desde el enlace que te proporcionamos o, mejor aún, desde el menú de redes sociales que encontrarás en la zona superior derecha de nuestro portal.
Si no eres usuario habitual de esta red social, te indicamos que debes estar registrado y con la sesión abierta en Pinterest para poder visitar los diferentes tableros que hemos creado, así como para recorrer la variedad de recursos que los componen, cuya descripción te informará sobre el proyecto de RED Descartes al que pertenecen y sobre su contenido u objetivos.
Si desconoces Pinterest, puedes tomar contacto rápidamente con el vídeo del canal TEC titulado "¿Qué es y cómo se usa Pinterest?
“Cuadrilateralia es una aplicación informática de carácter didáctico que pretende aprovechar a tendencia natural de manipular objetos concretos para, a través de la visualización, la observación, la composición y descomposición, el diseño y la construcción virtual, descubrir y estudiar las propiedades de carácter matemático de los cuadriláteros. Sus actividades han sido programadas teniendo en cuenta los principios de interactividad, brevedad en los textos, aleatoriedad y corrección o evaluación automática.”
Ése es el resumen descriptivo que Javier de la Escosura Caballero y María Antolina Muñoz Huertas hacen del recurso educativo del que son autores y que desarrollaron en el año 2006 usando Descartes. Fueron premiados por el Ministerio de Educación de España con el segundo premio a materiales educativos convocado por el Instituto de Tecnologías Educativas en el año 2006. Es un contínuum del recurso “Geometría dinámica del triángulo” que divulgamos en este blog y que igualmente hemos procedido a adaptarlo a DescartesJS permitiendo así que pueda utilizarse tanto en ordenadores como en tabletas y smartphones.
Los contenidos curriculares de Cuadrilateralia han sido vertebrados en torno a nueve capítulos o ejes temáticos:
En la guía didáctica, los autores, nos indican que:
“Las actividades guiadas e interactivas tales como: estudiar definiciones, fórmulas y clasificaciones; analizar propiedades de los lados, ángulos y diagonales; deducir las fórmulas del área o la cuadratura de los cuadriláteros utilizando puzles; usar regla y compás para resolver problemas de construcción; calcular áreas y perímetros tomando las medidas necesarias para ello; y encontrar los ejes de simetría o descubrir, doblando papel, cuándo un rectángulo es áureo, etc., favorecen la motivación y la comprensión y solución de los problemas relacionados con el tema.”
Y nos manifiestan que:
“Hemos realizado esta aplicación pensando en los alumnos y en las alumnas. Contando esencialmente con su participación activa. Ellos van a ser los/las protagonistas que con la ayuda del profesor han de tratar de llevar a buen puerto las actividades propuestas.
Ojalá que esta tarea os resulte a todos tan interesante, divertida y apasionante como para nosotros ha sido su elaboración.”
Todo lo expuesto concuerda con lo reflejado en el recurso y ciertamente es un medio eficaz para el aprendizaje activo e interactivo de los cuadriláteros.
¡Os invitamos a comprobarlo!