buscar Buscar en RED Descartes    

Valora este artículo
(23 votos)

La descomposición de un cubo en pirámides de base triangular surge de manera natural, y fácil, una vez que se han analizado las particiones de un cubo en pirámides de base cuadrada. Basta considerar una de las dos diagonales de dicha base cuadrada para que la pirámide quede partida en dos triangulares. Así pues, toda pirámide cuadrada puede subdividirse de dos formas diferentes en pirámides triangulares, sendas pirámides para sendas diagonales. No obstante, veremos que este procedimiento no conduce a la partición de cardinal mínimo, siendo necesario abordar un planteamiento constructivo independiente para lograrla. Este nuevo esquema nos conducirá a particiones que catalogaremos como no prismáticas o primásticas. Estas últimas serán objeto de un análisis específico en un tercer artículo relativo a este tema.

Particiones de un cubo en pirámides de base triangular 

1. Partición mediante descomposición de pirámides de base cuadrada

Si consideramos las diferentes particiones del cubo en pirámides cuadradas obtenidas en el artículo anterior entonces, automáticamente, son conocidas sendas particiones en pirámides triangulares sin más que considerar cada una de las dos diagonales del cuadrado que constituye la base en cada pirámide. Además, las dos subpirámides obtenidas serán equivalentes (con igual volumen), pues la base inicial cuadrada ha quedado dividida en dos partes iguales y la altura es común a ambas y, por tanto, el volumen de cada una de esas pirámides triangulares es la mitad del volumen inicial. En este contexto tendríamos las siguientes situaciones: 

  • Considerando la partición mínima del cubo en tres pirámides cuadradas obtendríamos una subpartición en seis pirámides triangulares equivalentes. Dado que cada una de esas pirámides cuadradas pueden dividirse de dos formas diferentes, según cual sea la diagonal del cuadrado que se considere, tendríamos a su vez varias posibilidades:
    • Si la diagonal que se considera conduce a dividir la pirámides cuadradas por su plano de simetría, entonces las seis pirámides son congruentes ya que hay tres coincidentes entre sí mediante traslación y giro (lo que de manera simplificada se suele indicar como iguales) y las otras tres son simétricas de las primeras ―denotaremos a una de las pirámides como tipo X1 y a su simétrica como X2―. la partición sería {X1, X2, X1, X2, X1, X2}  Este caso es el que usualmente puede encontrarse en las fuentes literarias clásicas y en la Web. Veremos que es una situación particular del estudio global, que abordaremos en otro articulo, correspondiente a lo que denominaremos particiones prismáticas porque agrupando esas pirámides de tres en tres el cubo queda descompuesto en dos prismas triangulares.
      Descomposición prismática del cubo en seis pirámides triangulares congruentes

      Escena 1. Partición prismática del cubo en seis pirámides triangulares congruentes
      (Haz clic en la imagen para acceder al recurso interactivo)


      Este proceso de división podría repetirse considerando la mediana de las nuevas bases y así obtendríamos una partición con doce pirámides equivalentes y dos familias de 6 pirámides congruentes entres sí; y con una nueva fracción por la mediana serían 24 pirámides equivalentes y 4 familias congruentes y, en general 3·2n pirámides equivalentes y 2n-1 familias de pirámides congruentes entre sí. Un entretenimiento teórico bonito, pero que físicamente su traslación a un contexto manipulativo rápidamente no es viable.

    • Si se considera la diagonal perpendicular al plano de simetría, cada pirámide cuadrada queda divida en dos pirámides equivalentes. La partición cuenta con dos tipos de pirámides que denotaremos como tipo Y (la que cuenta con un triedro trirrectángulo) y la otra que nombraremos tipo Z. La partición es {Y, Z, Y, Z, Y, Z}. Esta partición, a diferencia del caso anterior no es prismática.

      Partición no prismática de un cubo en seis pirámides triangulares equivalentes

      Escena  2. Partición no prismática del cubo en seis pirámides triangulares equivalentes

    • Si se combinan las dos posibilidades anteriores se obtienen siempre seis pirámides equivalentes y habría dos posibilidades: {X1, X2, X1, X2, Y, Z} o {X1, Y, Z, X2, Y, Z}, siendo ambas también particiones prismáticas.
  • Análogamente, en el caso de hacer tambien sólo una subdivisión por cada pirámide cuadrada, la partición en cuatro pirámides cuadradas se convertiría en ocho triangulares, la de cinco en diez y la de seis en doce.

En la siguiente escena se aborda de manera general la partición del cubo en pirámides triangulares a partir de las particiones del mismo en pirámides cuadradas: 

Partición no prismática de un cubo en seis pirámides triangulares equivalentes

Escena  3. Partición del cubo en pirámides triangulares por división de pirámides cuadradas. Caso general.

Todas las situaciones anteriores son, o pueden considerarse, interesantes y conducentes a puzles de cierta dificultad tanto en los casos en los que se busca la máxima congruencia o regularidad, como en la posición contraria. Pero ninguna de ellas conduce a la partición con cardinal mínimo, pues el planteamiento realizado viene condicionado por la partición previa en pirámides de base cuadrada. La partición mínima, como veremos en la próxima sección, se corresponde con cinco pirámides y salvo isometrías hay una única posibilidad para su construcción. Por ello, nuestro centro de interés se focalizará en la antes citada descomposición prismática del cubo en seis pirámides triangulares equivalentes, que sin ser el caso único de cardinal mínimo sí que genera una variedad de situaciones que nos proponemos cuantificar y detallar.

2. Partición mediante construcción específica

En esta sección partiendo de un cubo de vértices {A, B, C, D, E, F, G, H}, nos planteamos realizar una partición del mismo en pirámides triangulares buscando, por un lado, que la descomposición tenga cardinal mínimo y, por otro, buscando alternativas en las que sin ser de cardinal minimo se encuentren congruencias o equivalencias.

Dado que las pirámides triangulares son poliedros convexos con cuatro caras triangulares (es decir tetraedros) y cuatro vértices, en la planificación de esta partición han de tenerse en consideración las siguientes observaciones:

  • Las caras del cubo han de dividirse en triángulos y, por tanto, se parte de un mínimo de 12 triángulos (2 por cada cara del cubo) y 18 segmentos (las doce aristas del cubo, más seis diagonales necesarias para partir cada una de las seis caras del cubo), que junto a los ocho vértices constituyen los elementos primarios a partir de los cuales se han de construir las pirámides de la partición.
    Elementos primarios para la partición

    Escena 4. Una posible elección de los elementos primarios para realizar la partición 

  • El menor número de pirámides se obtiene cuando se consideran exclusivamente los elementos primarios citados. La introducción de cualquier vértice o segmento adicional generará un mayor número de combinaciones posibles, un mayor número de pirámides.
  • Dos pirámides de la partición pueden compartir como máximo tres vértices, una cara. O lo que es equivalente han de tener tres caras diferentes.
  • Una pirámide triangular de la partición queda determinada sin más que elegir dos segmentos con distinta dirección no coplanarios.
    Dos segmentos con diferente dirección no coplanarios

    Escena 5. Pirámide triangular determinada por dos segmentos con distinta dirección no coplanarios 

  • Cuando todas las diagonales correspondientes a las caras opuestas tienen distinta dirección las particiones en pirámides triangulares tienen más de seis pirámides, salvo:
    • Una partición con cinco elementos, que es la de cardenal mínimo, formada por cuatro pirámides trirrectángulas y un tetraedro regular.
      Partición de un cubo en cinco pirámides triangulares

      Escena 6. División del cubo en cinco prismas triangulares

    • Una partición con seis elementos, que es la partición no prismática indicada antes en la escena 2 y compuesta por las pirámides  {Y, Z, Y, Z, Y, Z}.
  • Cuando al menos un par de las diagonales correspondientes a caras opuestas tienen la misma dirección, entonces ese par junto a las dos aristas que son perpendiculares a ellas, forman un rectángulo y la partición en pirámides triangulares es posible sólo si se introduce al menos un segmento que bien subdivida ese rectángulo en dos triángulos o bien que lo corte. Al introducirse en la partición un nuevo elemento primario no puede obtenerse la partición de cardinal mínimo. 
    Segmentos coplanarios

    Escena 7. Diagonales coplanarias 


    Ese segmento adicional puede ser:
    • Una diagonal del cubo. Aquí la obtención de una partición obliga a incluir nuevos elementos primarios, puntos y segmentos, y  consecuentemente se incrementa el número de pirámides obtenidas.
    • La diagonal de ese rectángulo. En este caso el cubo queda dividido en dos prismas triangulares rectos con bases que son triángulos rectángulos isósceles. En esta situación diremos que la partición del cubo es prismática y veremos que conduce a un mínimo de seis pirámides triangulares; y en el caso de ser exactamente seis se cumple que siempre son equivalentes, es decir, que tienen igual volumen.
      Descomposición cubo en dos prismas triangulares

      Escena 8. División del cubo en dos prismas triangulares 

Así pues, nuestro análisis nos conduce a plantearnos la partición del cubo a través de la descomposición de un prisma triangular en pirámides triangulares. Éste puede ser un buen tema para detallar en un próximo artículo, y ello es mi propósito, confiando en que habrá colegas interesados en seguir comprobando como algo que parece tan simple, la descomposición de un cubo, no lo es tanto y aporta mucho juego, interés, conocimiento y belleza matemática. Por aquí ¡os espero pronto! 

Valora este artículo
(2 votos)
Cuando se accede a un juego didáctico se distingue una columna a la izquierda en la que aparecen los siguientes elementos:
  • Carátula del juego. Al pulsar sobre la misma se muestra una captura de pantalla del juego.
  • Reglas del juego. Se presenta la descripción, dinámica y objetivo del juego.
  • Documentos de registro. Apartado en el que se pueden descargar formularios de registro de respuestas y de resultado de los jugadores.
  • Tabla con las principales características del juego.
  • Autoría y licencia de uso.
En la parte central y derecha se presentan las opciones de configuración e introducción de datos del juego en ventana sucesivas:
  • En la primera ventana se selecciona la modalidad de introducción de preguntas en el juego: mediante fichero, oral, a mano al principio del juego, generadas por el juego y sin preguntas. Esta ventana no aparecerá si el juego dispone de una sola modalidad de introducción de preguntas.
  • En la segunda ventana se deben introducir los datos de los jugadores y las opciones de configuración del juego. Estas opciones pueden ser específicas del juego tales como: número de jugadores, orden de aparición de las preguntas, tiempo, sorteo de orden de participación de los jugadores, etc., o opciones generales (se encuentran en un menú superior visible durante todo el trascurso del juego) y son del tipo: reinicio del juego, sonido, idioma, registro de resultados, etc.
  • Si se ha elegido la modalidad de introducción de preguntas a través de ficheros, se mostrará una tercera ventana para cargar el fichero de preguntas de distintas formas: arrastrando el fichero, seleccionando el archivo a través del explorador del navegador, escribiendo su nombre o URL o a través de listas desplegables de repositorios.
  • A continuación y tras pulsar en el botón Jugar comienza el juego con la dinámica propia del mismo.
En el siguiente vídeo se muestra todo lo comentado:

Valora este artículo
(22 votos)

El estudio y búsqueda de regularidades o propiedades en cualquier objeto puede abordarse desde diferentes perspectivas. Una de ellas es proceder a la disección o descomposición buscando desentrañar el interior o lo particular para comprender el exterior o la globalidad. La máxima aristotélica de que el todo es más que la suma de sus partes no queda contradicha por acudir al hecho de realizar una partición matemáticamente descomponer un conjunto como unión de subconjuntos cuyas intersecciones tienen medida nula—, sino que metodológica o procedimentalmente es un medio humanamente asequible con el que dar un primer paso a través del cual buscar y tratar de abarcar, en un posterior análisis global, ese todo a partir de sus partes. En esta línea, en este artículo, mostraremos con recursos interactivos algunas particiones usuales de un cubo en pirámides con base cuadrada y comprobaremos como todos esos casos son situaciones particulares de una partición general basada en nueve puntos (los vértices del cubo y un adicional).  

El motivo para elegir una determinada partición de la infinidad de particiones posibles y hacerla distinguible del resto puede sustentarse en diversos criterios u objetivos, pero usualmente suelen marcarse pautas como que la partición tenga el menor número de elementos o que sea lo más regular posible, es decir, que las partes sean iguales o congruentes —que coincidan mediante una composición de isometrías (traslaciones, giros o simetrías)— o equivalentes —con igual medida— o cualquier otro parámetro que sea atractivo para quien busque adentrarse en este contexto. Pero la elección también podría estar marcada por criterios opuestos o diferentes a los anteriores. Si pensamos en que la reconstrucción del cubo a partir de las piezas de una partición es un entretenimiento usual, catalogado como rompecabezas o puzle, el diseñador del mismo puede perseguir que todas las piezas sean iguales o plantarse en la situación opuesta de que todas sean diferentes. La dificultad o sencillez, la mayor o menor belleza del modelo obtenido tiene más componente subjetivo que objetivo; pero la belleza matemática siempre estará implícita en todos y cada unos de los planteamientos realizados, al ser medios y soportes conducentes a la extracción y obtención del conocimiento.

En este artículo analizaremos la partición de un cubo en pirámides de base cuadrada y en un artículo posterior nos adentraremos en la partición en pirámides de base triangular (tetraedros aunque no necesariamente regulares).

Particiones de un cubo en pirámides de base cuadrada 

Posicionándonos y atendiendo al criterio de que la partición tenga cardinal mínimo o que sea lo menor posible y adicionalmente que sus componentes sean regulares o que sean lo más similares entre sí, podemos encontrar cuatro situaciones, que son las que usualmente se muestran y divulgan, y que reflejaremos en sendos recursos interactivos. En ellos se conjugará la virtualidad digital con la posibilidad de contruir el modelo respectivo de forma tangible, a lo que animamos e invitamos a todos.

1. Tres pirámides cuadradas iguales.

Este caso se corresponde con la partición con cardinal mínimo.  Las tres pirámides comparten la misma cúspide y son iguales. Esta partición suele tomarse como base para mostrar que el volumen de una piramide es la tercera parte del área de su base por su altura, pero no nos adentraremos en ese objetivo. 

Partición de un cubo en tres pirámides cuadradas iguales

Haz clic en la imagen para acceder al recurso interactivo

2. Cuatro pirámides cuadradas iguales dos a dos.

Esta partición se caracteriza porque las cuatro pirámides también comparten la misma cúspide y son iguales dos a dos.  

Partición de un cubo en cuatro pirámides cuadradas iguales dos a dos

Haz clic en la imagen para acceder al recurso interactivo

3. Cinco pirámides cuadradas, cuatro iguales y una desigual que es regular.

Aquí las cinco pirámides vuelven a tener la misma cúspide.

Partición de un cubo en cinco pirámides cuadradasHaz clic en la imagen para acceder al recurso interactivo

4. Seis pirámides cuadradas regulares e iguales.

Todas las pirámides comparten la misma cúspide y todas son regulares e iguales (congruentes). 

Partición de un cubo en seis pirámides cuadradas igualesHaz clic en la imagen para acceder al recurso interactivo

 

 

Todos los casos anteriores son los ejemplos que usualmente se suelen mostrar en múltiples contextos por su simplicidad y belleza. Pero, como hemos indicado, la belleza también puede alcanzarse a través de un análisis global en el que los casos anteriores no sean más que un caso particular de una situación general, y donde la diversidad y la diferencia sean la pauta a lograr. En ese empeño, a continuación, mostraremos de manera razonada y constructiva cómo abordar una partición del cubo en pirámides de base cuadrada, y adicionalmente se podrá observar digital y analógicamente apoyándonos en un nuevo recurso interactivo.

Generalización de la partición del cubo en pirámides cuadradas

Para construir una partición del cubo en pirámides cuadradas es necesario, obligatorio, utilizar los ocho vértices del cubo y las doce aristas del mismo, y adicionalmente hay que seleccionar o marcar cuál o cuáles serán las cúspides de las pirámides a construir. La introducción de puntos adicionales a los vértices hará que aumente el número de combinaciones de cinco puntos que pueden realizarse y consecuentemente podrá incrementarse el número de pirámides de la partición (no todas las combinaciones posibles de vértices son viables para obtener una partición del cubo).  Así pues, analicemos diferentes alternativas:

  • No incluir ningún punto adicional.
    Esta elección obliga a que la cúspide de cada pirámide sea uno de los vértices del cubo y si además imponemos que todas las pirámides compartan la misma cúspide entonces obviamente obtendremos la partición de cardinal mínimo. Este plantemiento es viable pues basta seleccionar un vértice del cubo y desde él trazar segmentos a cada uno de los otros siete vértices, ello conduce a la partición en tres pirámides que ha sido reflejada en el primer caso descrito en este artículo. La partición es única pues, se elija el vértice que se elija, todas las particiones son congruentes mediante giros.
  • Añadir un punto adicional. 
    Este punto sería la cúspide común de todas las pirámides a construir para que así el número de éstas sea lo menor posible y constructivamente se procede igual que en el caso anterior trazando segmentos desde la cúspide común a los vértices del cubo. Dicho punto adicional ha de pertenecer al cubo, bien a su interior o a la frontera y por tanto podemos distinguir las siguientes situaciones:
    • Punto perteneciente a una arista. Aquí obtendremos una partición compuesta por cuatro pirámides. En general las cuatro son distintas, pero entre dos de ellas se da siempre una congruencia (una es simétrica de la otra). Y hay un caso particular en el que las pirámides son iguales dos a dos, que es el segundo caso expuesto en la sección anterior, y que acontece cuando el punto adicional considerado es el punto medio de la arista.
      La arista a la que pertenezca el punto no introduce ninguna variación. Todas serán situaciones congruentes. 
    • Punto perteneciente a una cara. Este caso conduce a la partición en cinco pirámides y de las infinitas posibilidades la situación con más regularidad es cuando el punto elegido es el punto donde se intersecan las diagonales de la cara. Es el tercer caso expuesto con anterioridad.
      La partición, salvo isometrías, es independiente de la cara seleccionada
    • Punto perteneciente al interior del cubo. Esta situación hace que sean seis pirámides las que forman la partición. De las infinitas particiones posibles, cuando el punto seleccionado es el punto de intersección de las diagonales del cubo se tiene que las seis pirámides son iguales y regulares, éste es el cuarto caso mostrado antes.

En el siguiente objeto interactivo puede experimentarse y verse todo lo indicado.

Partición de un cubo en pirámides de base cuadarada. Caso general.

Haz clic en la imagen para acceder al recurso interactivo

 

En un próximo artículo nos adentraremos en la partición de un cubo en pirámides triangulares.

Valora este artículo
(16 votos)

"En la actualidad, las mujeres y niñas encuentran barreras de muchos tipos, a veces muy sutiles, que dificultan su presencia en la ciencia. Esta desigualdad es patente en la elección de los estudios por parte de las niñas y se va agudizando al avanzar en las carreras científicas y tecnológicas. Con el objetivo de lograr el acceso y la participación plena y equitativa en la ciencia para las mujeres y las niñas, la igualdad de género y el empoderamiento de las mujeres y las niñas, el 15 de diciembre de 2015, la Asamblea General de las Naciones Unidas proclamó el 11 de febrero de cada año como el Día Internacional de la Mujer y la Niña en la Ciencia".

El párrafo ha sido extraído literalmente del sitio web 11 de febrero, donde puedes encontrar toda la información relativa a esta importante fecha, a la que RED Descartes se suma animando a celebrar dicha efemérides, programando y realizando actividades en las aulas y aportando los recursos y experiencias disponibles en nuestros dominios.

Día Internacional de la Mujer y la Niña en la Ciencia

 

Desde RED Descartes se difunde la enorme labor desarrollada, a lo largo de la historia, por la mujer en la ciencia, y muy especialmente en las ciencias matemáticas, físicas y químicas. Además, promovemos en nuestras aulas y divulgamos la ciencia que realizan nuestras alumnas desde los diversos proyectos que abordamos y que compartimos en este artículo para apoyar los objetivos del 11 de febrero.

 LA MUJER EN LA CIENCIA

"El personaje misterioso" es un programa de Radio Descartes conducido por Eva Perdiguero y Ángel Cabezudo con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Concretamente, tras la entrevista del invitado, que no se desvela, el escuchante debería conocer su nombre o bien tomar los datos que se aportan en la dramatización y tomarse un tiempo para averiguarlo consultando en la múltiple documentación que hoy día se encuentra disponible, principalmente en Internet o en libros divulgativos de Historia de las Matemáticas o de Matemáticos célebres, pasando a responder en un comentario del blog de nuestro portal. Pues bien, de este proyecto hemos seleccionado las siguientes entrevistas a mujeres matemáticas de la historia, cuyas voces son interpretadas por mujeres científicas del ámbito educativo. Así, aportamos los siguientes recursos:

Para descubrir al personaje misterioso, se publica un puzle creado con Descartes JS que incluye imágenes alusivas, alegóricas o de efemérides que descubren al personaje:

 CONTRIBUCIONES DE ALUMNAS A LA CIENCIA

Son varios los proyectos difundidos desde el portal de RED Descartes donde las alumnas son protagonistas y divulgadoras de la ciencia, especialmente de la matemática. Así, del proyecto para el "desarrollo de la comunicación audiovisual a través de las matemáticas con Descartes", hemos seleccionado con motivo del día 11 de febrero las siguientes contribuciones y aportaciones de alumnas a la ciencia:

"La radio ficción en el aula de matemáticas" es otro de los proyectos difundidos en el portal de RED Descartes, del que hemos seleccionado las siguientes contribuciones de alumnas a la ciencia:

Finalmente, del proyecto "El alumnado como generador de contenido multimedia con Descartes JS" hemos realizado la siguiente selección de producciones en las que participan alumnas:

 JUEGO DIDÁCTICO SOBRE MUJERES CIENTÍFICAS

El juego es una de las estrategias didácticas de gran valor que motiva a nuestro alumnado y que se potencia con las tecnologías de la información y la comunicación. Así que os dejamos el que ha creado nuestro compañero Jesús M. Muñoz Calle, del proyecto Aplicación de Juegos Didácticos en el Aula, para difundir algunos de los decubrimientos y avances científicos gracias a la mujer, con algunas capturas de pantalla por si fueran necesarias.

Mujeres científicas 

Tutorial para acceder al juego

Tutorial para acceder al juego

Página 38 de 76

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Lo más leído de lo publicado hace un mes

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information
Filter: