Nuestros niños y niñas se encuentran disfrutando del período vacacional de verano, con mucho tiempo para compartir con sus familias y amigos, así como para el descanso y ocio. No obstante, siempre es recomendable encontrar el momento adecuado para sugerirles una interesante lectura y realizar, en nuestra compañía o junto a sus hermanos y hermanas mayores, algunas actividades de las áreas básicas del conocimiento. Ahora bien, para ello, las familias requieren de una orientación y asesoramiento que pueden recibir por diferentes canales de comunicación.
Con este fin, la Red Educativa Digital Descartes, ofrece una amplia selección de recursos digitales interactivos a los que pueden accederse desde cualquier lugar y hora, en el campo o en la playa, con un simple ordenador personal, portátil, tableta o smartphone y conexión a la red de internet, aunque también es posible descargarse el objeto de aprendizaje para usarlo en local, es decir, sin conexión a internet.
Estos recursos están organizados y catalogados por etapa educativa y edad, como se aprecia en la imagen inferior, así , las familias podrán seleccionar, con un simple clic sobre la imagen correspondiente o sobre el texto que la acompaña a su derecha, los adecuados para sus hijos e hijas, encontrando la relación con los nombres de las actividades y una breve descripción de la misma.
No obstante lo anterior, cada familia, como mejor conocedora de las capacidades de los niños y niñas, podrá optar por realizar las actividades de diferente edad.
La LOMCE no contempla los tres ciclos de Primaria, sino seis cursos independientes. lo que no supone obstáculo alguno para que los niños y niñas disfruten con estos recursos de gran calidad, pues accediendo al ciclo en cuestión, según la edad, y seleccionando el recurso deseado puede verse con detalle a qué curso concreto corresponde.
Esperamos que esta aportación, completamente gratuita, de la RED Descartes sea de utilidad para el mayor número posible de familias y animamos a dejar comentarios con sus opiniones.
El mapeado de la imagen se ha realizado desde la nube con la herramienta Image-Maps.
En los diferentes subproyectos que conforman la organización no gubernamental RED Descartes hay profusión de contenidos relativos a la Estadística y la Probabilidad que prácticamente cubren las exigencias curriculares de Primaria, ESO y Bachillerato. La particularidad de estos contenidos es que son: dinámicos, interactivos, formativos y en algunos casos, además, evaluativos. Ya en la anterior entrada en este blog señalamos algunos de esos recursos y siguiendo en esa línea y teniendo en cuenta que nuestro objetivo es el análisis de los errores de tipo I y II en los contrastes (tests) de hipótesis hemos seleccionado los siguientes contenidos:
También enlazamos la excelente unidad didáctica, dinámica e interactiva, creada con DescartesJS por la profesora Mª José García Cebrian (2001) y revisada y adaptada por ella misma (2017) INFERENCIA ESTADÍSTICA
Desde la generalización del uso del astrágalo (taba) para dilucidar todo tipo de cuestiones relacionadas con la incertidumbre o sencillamente como elemento lúdico para ejercitar la habilidad mezclada con la suerte, la Geometría y el Azar comenzaron a ir de la mano. De hecho el gráfico de los cuerpos platónicos que mostramos en la cabecera de esta entrada es probablemente una de las mejores definiciones de equiprobabilidad que podamos ver. El hecho tangible de manipular cualquiera de estos cuerpos transmite una sensación de equilibrio, perfección y equidad, amén de otras, difícilmente igualable.
Los motivos por los que, primero el conde de Buffon y más tarde Pierre-Simón Laplace, conde del Imperio, atendieron este problema no están claros. El efecto inmediato si, a partir de entonces la utilidad del uso de la Geometría en cuestiones de probabilidad estaba comprobada así como el uso de métodos estadísticos y probabilísticos para aproximar valores de constantes geométricas.
Con el objetivo de rememorar el establecimiento formal de la relación entre la Estadística-Probabilidad con la Geometría y también por la idoneidad del experimento con la introducción al estudio de la Inferencia Estadística que estamos desarrollando se ha elaborado la miscelánea "Experimento: La Aguja de Buffon". En esta miscelánea se recrea dicho experimento con las siguientes particularidades:
Experimento de Buffon. Lanzamiento de agujas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra una clase sobre la estimación de la media poblacional mediante intervalos de confianza. Este vídeo es uno de los enlazados en el libro digital interactivo "Estadística, Probabilidad e Inferencia".
Acerca de los cuerpos platónicos.
Ildefonso Fernández Trujillo. 2018
PISA 2017 pertenece al proyecto competencias de la RED, un proyecto con unidades de aprendizaje interactivas cuyo objetivo es la formación y evaluación en competencias.
El material desarrollado en este proyecto se basa en las pruebas liberadas del programa PISA y se estructura como objetos de aprendizaje autónomos e independientes. Por su contenido se clasifican en ciencias, comprensión lectora, finanzas, matemáticas y resolución de problemas.
De cada prueba el usuario dispone de la versión original o una versión diseñada por la RED en la cual, partiendo de la versión original, se ha introducido la aleatoriedad en los datos y las preguntes. Al finalizar las actividades se incluye la corrección de las respuestas, envío por mail, descarga y/o impresión.
En el siguiente vídeo vamos a mostrar un ejemplo de trabajo en el aula con la inserción de dichos materiales en un curso moodle y su calificación mediante el recurso tarea.
Hemos seleccionado las actividades Gráficos (que consiste en interpretar correctamente la información contenida en un gráfico y construir gráficos que tengan sentido en un contexto determinado) y Vallas (en el contexto del diseño de un jardín, se trata de analizar la relación entre el perímetro y el área de una forma rectangular y compararla con una forma circular).
Este mes vamos a ver un vídeo sobre la geometría del plano:
Hemos tratado los siguientes puntos:
1.Rectas. Paralelas y perpendiculares
El plano
Puntos y rectas
Recta, semirrecta y segmento
Propiedades de la recta
Posiciones relativas
Paralelismo
Perpendicularidad
2.Mediatriz de un segmento.
Definición de mediatriz
Construcción de la mediatriz
Simetría
3.Ángulos. Clasificación y medida.
Definición de ángulo
Tipos de ángulos
Relaciones entre ángulos
Medida de ángulos
Sistema sexagesimal
4.Bisectriz de un ángulo.
Definición de bisectriz
Construcción de la bisectriz
5.Operaciones con ángulos.
Suma de ángulos
Resta de ángulos
Multiplicación por un nº
División de un ángulo por un nº
Operaciones en sexagesimal
En la Wikipedia, al buscar información sobre el tema, encontramos lo siguiente:
"En la teoría de la probabilidad, bajo el término genérico de ley de los grandes números se engloban varios teoremas que describen el comportamiento del promedio de una sucesión de variables aleatorias conforme aumenta su número de ensayos.
Estos teoremas prescriben condiciones suficientes para garantizar que dicho promedio converge (en los sentidos explicados abajo) al promedio de las esperanzas de las variables aleatorias involucradas. Las distintas formulaciones de la ley de los grandes números (y sus condiciones asociadas) especifican la convergencia de formas distintas.
Las leyes de los grandes números explican por qué el promedio de una muestra al azar de una población de gran tamaño tenderá a estar cerca de la media de la población completa.
Cuando las variables aleatorias tienen una varianza finita, el teorema central del límite extiende nuestro entendimiento de la convergencia de su promedio describiendo la distribución de diferencias estandarizadas entre la suma de variables aleatorias y el valor esperado de esta suma: sin importar la distribución subyacente de las variables aleatorias, esta diferencia estandarizada converge a una variable aleatoria normal estándar.
La frase "ley de los grandes números" es también usada ocasionalmente para referirse al principio de que la probabilidad de que cualquier evento posible (incluso uno improbable) ocurra al menos una vez en una serie aumenta con el número de eventos en la serie. Por ejemplo, la probabilidad de que un individuo gane la lotería es bastante baja; sin embargo, la probabilidad de que alguien gane la lotería es bastante alta, suponiendo que suficientes personas comprasen boletos de lotería.
El matemático italiano Gerolamo Cardano (1501–1576) afirmó sin pruebas que la precisión de las estadísticas empíricas tienden a mejorar con el número de intentos. Después esto fue formalizado como una ley de los grandes números. Una forma especial de la ley (para una variable aleatoria binaria) fue demostrada por primera vez por Jacob Bernoulli. Le llevó más de 20 años desarrollar una prueba matemática..."
La siguiente imagen enlaza con una pequeña utilidad dados.xls creada con Microsoft Excell 2010 que simula el lanzamiento de un dado y comprueba lo predicho. La hoja de cálculo, que es editable, simula el lanzamiento de un dado desde 90.000 a 63.000.000 de veces. Cada 'lanzamiento' consiste en generar, de forma 'aleatoria' (semialeatoria), un número entero del 1 al 6, y tener en cuenta el resultado incrementando en una unidad la cantidad apropiada. Se observa como al realizar pruebas sucesivas aumentando en cada una el número de lanzamientos el valor de la frecuencia relativa de un suceso concreto va acercándose muy lentamente al valor teórico previsto para su probabilidad de ocurrencia.
Aquí tocamos un tema interesante, la generación de números aleatorios (semialeatorios). Cada lenguaje de programación, cada intérprete y cada autor tiene su propia manera de generar números aleatorios. El hipervínculo anterior es un ejemplo de lo dicho y al final del artículo se enlazan algunas de las páginas que tratan este asunto.
Dentro de la particularidad que nos ocupa: el estudio de la probabilidad a posteriori, o también probabilidad de las causas, que evidentemente es consecuencia de lo comentado en los párrafos anteriores, destaca la labor de Thomas Bayes que con su teorema sobre la probabilidad de las causas condicionadas a los efectos observados, abrió un amplio abanico de posibilidades al estudio científico de múltiples situaciones. El avance de las ciencias sociales, políticas y económicas, por citar algunas, se debe al uso acertado y sistemático de esta filosofía, además de a otras herramientas afines.
donde:
A continuación enlazamos con una utilidad, creada con el editor DescartesJS, en la que, en primer lugar, se plantea una situación resoluble mediante el teorema de Bayes. Siguiendo las indicaciones que proporciona la propia escena, esta muestra el planteamiento y solución del ejercicio y más adelante la utilidad plantea, en una nueva escena, otra situación similar para que la persona interesada la resuelva ofreciéndose la posibilidad de contrastar la solución.
Entre los materiales disponibles para su uso y descarga en la web de la Red Descartes, relacionados con la Estadística y la Probabilidad, se encuentra una completa colección de utilidades que cubren todo el recorrido curricular, desde Primaria a Bachillerato. La autoría de estos materiales corresponde a miembros de la Red Descartes y, entre otros, destacamos la labor de:
En próximas entradas continuaremos exponiendo enlaces a algunos de los contenidos interactivos de Estadística y Probabilidad significativos por su capacidad didáctica.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la aplicación del teorema de Bayes a la resolución de un problema.
A continuación exponemos algunos enlaces a la información sobre la generación de números aleatorios.
Ildefonso Fernández Trujillo. 2018