En este artículo cometamos las principales actuaciones que se están desarrollando dentro del Proyecto de Investigación que llevan conjuntamente el departamento de Ingeniería Telemática de la ETSI de la Universidad de Sevilla y el Proyecto AJDA durante el curso 2021-2022.
Los Trabajos Fin de Grado en que están actualmente en desarrollo son los siguientes:
Título: Física. Volumen 1
Sección: iCartesiLibri
Bloque: Física
Unidad: Mecánica
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autor: Juan Gmo. Rivera Berrío
Diseño del libro: Juan Gmo. Rivera Berrío
Obra derivada: OpenStax University Physics, University Physics Volume 1
ISBN del volumen: 978-84-18834-40-0
ISBN de la obra completa: 978-84-18834-39-4
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
http://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Institución Educativa Cisneros
Sección: iCartesiLibri
Bloque: Textos institucionales
Unidad: Convivencia
Nivel/Edad: Primaria y secundaria (6 años o más)
Idioma: Castellano
Autor: Édgar Herrera Morales
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
http://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
1A.
Material previo a esta sesión: se ven los siguientes elementos (págs. 91 y siguientes del libro guía). 1. Expresiones matemáticas con KaTeX: https://www.youtube.com/watch?v=mLTJrE_fsL0
Material para explorar después de esta sesión: Se comparte un libro con los elementos explicados en esta sesión. Puede descargarlo desde este enlace. |
El 1 de junio de 2013 constituimos la organización no gubernamental sin ánimo de lucro denominada "Red Educativa Digital Descartes" (RED Descartes) con el objetivo de dar continuidad y mejorar el proyecto educativo denominado "Proyecto Descartes". Este último surgió en junio de 1998 en torno a la herramienta de autor denominada "Descartes" que introducía la posibilidad de que el profesorado pudiera generar objetos educativos interactivos de manera asequible y que, mediante ellos, el alumnado pudiera lograr su aprendizaje de manera significativa a través de la simulación y de una respuesta automática contextualizada a sus intervenciones. Se contaba con una herramienta que podía promover un cambio metodológico en la enseñanza y aprendizaje de las Matemáticas y que ayudaba a difundir el saber a través de las TIC. Éstas, en aquel momento, comenzaban a extenderse de manera rápida. ¡Haga memoria!, bueno, quien tenga edad para ello, y recuerde que en aquel momento ¡no existía ni Google!, que la velocidad de transferencia de datos era comedida y que los teléfonos inteligentes y tabletas sólo existían como primigenios prototipos de la realidad que se ha alcanzado con posterioridad. ¡Era otro mundo!, pues, aunque ahora nos parezca extraño, esos apéndices que nos han surgido en las manos ¡son artefactos de escasa edad!, meros adolescentes en una analogía temporal humana.
Quienes constituimos y damos soporte a este proyecto hemos de sentirnos satisfechos por habernos mantenido dentro del maremágnum tecnológico cambiante y por la labor educativa realizada. Así pues, debemos de festejar con orgullo este nuevo aniversario, felicitándonos por los logros alcanzados, por los objetivos logrados en este último año y, a la vez, al apagar las velitas expresemos el deseo y la voluntad de poder seguir trabajando altruistamente para la mejora educativa en nuestra aldea global.
Y terminamos, como hicimos hace un año con una manifestación que no nos molesta reiterar:
¡Continuamos...! ¡Con ilusión, iniciamos un nueva vuelta al Sol... con Descartes!
¡Felicidades a todos los cartesianos!
¡Feliz vigésimo cuarto aniversario del Proyecto Descartes! y ¡Feliz noveno cumpleaños de RED Descartes!
Título: Compostaje y lombricultivo
Sección: iCartesiLibri
Bloque: Ciencias
Unidad: Ciencias agroindustriales
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autor: Yezid Gallego Oviedo
Revisión y edición: Juan Gmo. Rivera Berrío
ISBN: 978-84-18834-38-7
versión en pdf con enlace a los interactivos
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
http://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Química en al vida cotidiana: el jabón
Sección: iCartesiLibri
Bloque: Química
Unidad: Reacciones químicas
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autor: Margarita Patiño-Jaramillo, John Jairo García-Mora, Sonia Jaquelliny Moreno-Jiménez
Diseño del libro: Juan Gmo. Rivera Berrío
ISBN:
978-84-18834-37-0
versión en pdf con enlace a los interactivos
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
http://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Septos del Nautilus en el primer verticilo. Puntos notables.
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de la Miscelánea en
http://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Modelo tangencial de los septos y de la pared ventral en el segundo y tercer verticilo del Nautilus
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de la Miscelánea en
http://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
1A.
Material previo a esta sesión: se ven dos elementos multimedia: vídeo y audio (págs. 54 a 80 del libro guía). 1. Elemento audio 2. Elemento video 3. Archivo comprimido con interactivos de DescartesJS para usar con audio y vídeo y que se genere adecuadamente el pdf. |
Sección: Proyecto PI
Bloque: Aritmética
Unidad: Números y operaciones
Nivel/Edad: 1º Ciclo de Primaria (7 años)
Idioma: Castellano
Autoría: Marisol Ramos Astudillo
Haz clic en la imagen para abrir el recurso
Vídeo divulgador: Versión en PowerPoint sin aleatoriedad:
![]() |
![]() |
Puedes encontrar todos los materiales del Proyecto PI en http://proyectodescartes.org/PI/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
En este nuevo artículo sobre la ontogenia matemática del Nautilus, después de haber modelizado los septos en el segundo y tercer verticilio bajo el invariante de tangencialidad, nos adentramos en la modelización de los septos en el primer verticilo. Esta primera fase de crecimiento vimos que se muestra diversa y con apariencia poco regular, cambiante (menor número de cámaras septales, ocho frente a las dieciséis de la etapa juvenil y adulta, con secciones y amplitudes que cambian como necesidad biológica para alcanzar la flotabilidad) y, ahora, ha llegado el momento de mostrar el modelo matemático que da explicación a esta etapa e introduce la regularidad esperada que parecía no acaecer, pero que queda al descubierto bajo la perspectiva matemática. De nuevo, el hecho de que intervengan dos espirales con diferente polo, en este caso la espiral de la pared ventral y la espiral de los polos de los septos, conduce a proporciones variables entre los radios vectores y consecuentemente a que se formen septos con factores de escala variables. Ello nos conduce y permite determinar las ecuaciones de los septos, los puntos de tangencia con la pared ventral y los de intersección con la pared dorsal (para ello necesitaremos introducir un grosor en el modelo matemático de esa pared, que es lo que físicamente acontece).
Completaremos el contenido de este documento agrupando y relacionando entre sí diferentes puntos que se han ido detectando en este análisis. Unos que denominamos notables, porque matemáticamente son los que establecen el modelo matemático y dan explicación causal al mismo, y que son polos de diferentes espirales. Y otros que catalogaremos como destacables, posible fuente de inspiración matemática futura, y que son centros desde los que algunos objetos se observan con perspectiva angular constante.
![]() |
|
Propociones entre los radios vectores de la espiral ventral y los de la espiral de los polos de los septos | Puntos notables y destacables |
Así pues, doy continuidad a los artículos anteriores (I, II, III, IV y V), con un contenido adicional que espero sea de su interés —¡para mí es siempre una satisfacción! ir pudiendo relatarles progresivamente lo que, poco a poco, me cuenta la concha de este animalito—, y he de adelantarles que serán necesarios algunos artículos adicionales porque aún nos quedan secretos que dilucidar en esta ontogenia, en particular lo que acontece en la transición de la fase embrionaria (primera y segunda cámara septal) donde el sifúnculo cambia abruptamente de posición, y en la fase de transición entre el primer y segundo verticilo (cámaras octava, novena y décima) donde al finalizar la primera vuelta se produce el encuentro del fragmacono con la concha embrionaria. Y también habrá que abordar la síntesis o resumen final, es decir, plasmar y reproducir ese modelo ontogénico de la concha del Nautilus.
![]() |
|
El sifúnculo en la segunda cámara septal | Transición entre el pimer y segundo verticilo |
Como observamos, una mirada atenta y un continuo deseo de comprensión nos hace ir visualizando cada vez más detalles que inicialmente pueden parecer nimios, pero que finalmente se han ido mostrando como retos cuya resolución es de interés. Todo ello, a costa de que a ustedes a lo mejor les ocurra como a mi sobrina nieta (Aurora, cerca de los cuatro años) que ayer, al verme una vez más delante de la pantalla de mi ordenador, indagando la imagen de la sección del Nautilus con diversos objetos matemáticos superpuestos, la cual ya ha observado en multitud de ocasiones y quizás hayan sido demasiadas para ella, dijera: "¡Tita!, ¡el tito todavía no ha hecho sus deberes!". Por tanto, espero poder ir finalizando mis deberes, que realmente no son más que satisfacciones aunque requieran esfuerzo y dedicación, y que en el trancurso hacia su final les pueda tener como lectores y juntos podamos desarrollar nuestra vocación como μαθηματικός (mathēmatikós) o amantes del conocimiento.
En el siguiente pdf (o desde este enlace) tienen desarrollados los contenidos de este artículo
Ontogenia matemática del Nautilus VI
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Google Sites es un sitio web público que permite crear espacios virtuales de forma muy fácil y sencilla sin necesidad de grandes conocimientos de programación.
Este espacio virtual o página web es una herramienta interesante para la docencia ya que posibilita la incorporación de todo tipo de objetos digitales educativos para la enseñanza-aprendizaje. Facilita al profesorado el diseño y presentación de los recursos elegidos para sus clases y permite a los estudiantes acceder de forma sencilla a los materiales.
En este artículo se propone la creación de un espacio virtual de Google Sites para publicar materiales didácticos. En este espacio se propone insertar algunas unidades de la RED para su aplicación en el aula.
Las unidades Descartes elegidas: Áreas y números decimales y Fórmulas para calcular el área, pertenecen al subproyecto Telesecundaria, una modalidad del sistema educativo de México para los estudios de secundaria. Los objetos digitales pertenecientes a este proyecto son unidades independientes y se pueden aplicar también en cualquier otro sistema educativo.
En el siguiente vídeo se muestran las actividades que comprenden estos objetos y se indican con detalle los pasos a seguir para la inserción de estas unidades en Google Sites.
Título: Derivadas de potencias de funciones (continuación)
Sección: Prometeo
Bloque: Análisis
Unidad: Derivación de funciones
Nivel/Edad: 1º Bachillerato (16 o más años)
Idioma: Castellano
Autoría: Carlos Hernández Garciadiego
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales del Proyecto Prometeo en http://proyectodescartes.org/Prometeo/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional