Valora este artículo
(2 votos)

Publicamos hoy el tercer artículo dedicado a compartir y difundir algunas propuestas didácticas para el desarrollo de la comunicación audiovisual en nuestro alumnado a través de las Matemáticas con Descartes, que bien podríamos denominar en este caso "el valor añadido de la elegancia en la resolución de problemas", donde podemos observar, si cotejamos con las anteriores, la peculiaridad, creatividad e imaginación de cada equipo para afrontar retos incontrolados: Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes y Comunicación audiovisual con iCartesiLibri.

En esta ocasión abordamos las aplicaciones de la Trigonometría para la resolución de problemas de la vida cotidiana y de la Topografía clásica, habiendo usado un dispositivo móvil tipo tableta para la grabación del vídeo. Sus autores y protagonistas nos contarán los obstáculos encontrados y la forma de solventarlos.

Valora este artículo
(2 votos)

Es el título de la comunicación presentada y defendida por Álvaro Molina Ayuso, miembro de RED Descartes, en el  XV CEAM, Congreso de Enseñanza y Aprendizaje de las Matemáticas, organizado por la Sociedad Andaluza de Educación Matemática "Thales" y celebrado en la sede Antonio Machado de la Universidad Internacional de Andalucía en Baeza.

Los estudiantes del Siglo XXI deben saber utilizar las herramientas tecnológicas no solo como elementos para la transmisión de contenidos. Las nuevas tecnologías nos permiten llevar a cabo una transformación en el proceso de aprendizaje ofreciendo al alumno la posibilidad de desarrollar su imaginación y creatividad construyendo, compartiendo, diseñando y experimentado a través de los contenidos. La exploración de nuevas herramientas como el software educativo Scratch es imprescindible para llevar a cabo el proceso de innovación educativa que permita adaptar el proceso de enseñanza-aprendizaje al ritmo que marca la sociedad actual.

Valora este artículo
(2 votos)

Una vez publicados los artículos de esta serie de puntos notables del triángulo (Ortocentro, Baricentro, Circuncentro e Incentro) concluimos en éste con una propiedad interesante: Se trata de la Recta de Euler, donde se sitúan curiosamente el ortocentro, el baricentro ó centroide y el circuncentro que es motivo para nuevas reflexiones sobre la geometría del triángulo.

Utilizamos como recurso didáctico, al igual que en los anteriores casos, un puzle de arrastre que cuando se arma se muestran algunas observaciones y se enumeran algunas propiedades que invitan a la reflexión y a visitar dos materiales de consulta donde se puede encontrar respuesta a distintas cuestiones a través de la interacción con las escenas de DescartesJS y el visionado de un vídeo

La siguiente imagen lleva un enlace al puzle que se abrirá en una nueva ventana.

Puzle incentro

Una vez completada la publicación de la serie de puntos notables del triángulo,  todos estos materiales se integrarán en una unidad que llevará por título “Puzles geométricos: Puntos notables del triángulo” y formará parte de la Miscelánea en la sección de Materiales de esta Web.

Descarga del puzle.

Valora este artículo
(0 votos)

La semana pasada en Radio Descartes, en el espacio “¿Quién es el personaje misterioso?” hacíamos una entrevista a un célebre matemático, astrónomo, geógrafo, filósofo, filólogo y poeta de la antigüedad griega y evitábamos dar su nombre con el objetivo de que fueran los escuchantes los que con los datos aportados pudieran averiguarlo.

Hoy, trascurrida una semana tal como anunciábamos, vamos a descubrir al personaje a través de una escena de DescartesJS que presenta tres imágenes seleccionadas a través de un control de botón. Cada imagen ha sido recortada en 24 cuadrados que pueden girar 90 grados alrededor de su centro cada vez que se hace clic con el ratón sobre cada uno de ellos hasta completar una vuelta completa. Esto es lo que conocemos como puzle giratorio. Un contador indica el número de piezas que están correctamente rotadas con lo que se puede saber si el puzle ha sido armado y en su caso cuantas piezas nos faltan por obtener la imagen definitiva.

La primera imagen es una composición que muestra un grabado con la efigie que se atribuye al personaje y un esquema que refiere los datos que utilizó para medir el radio de la Tierra.

La segunda imagen es un dibujo que representa un mesolabio, ingenio que se atribuye a nuestro personaje, que sirvió para determinar mecánicamente la medida de dos segmentos medios proporcionales entre otros dos y permitía a los constructores de cubos encontrar la arista del cubo de volumen doble a otro dado.

La tercera imagen es una copia del siglo I del mapamundi atribuido a nuestro personaje. Las tierras y océanos quedan situados geográficamente mediante una red de meridianos de longitud y paralelos de latitud tal como se identificaban en aquellos tiempos.

 

El autor de este artículo, la edición de las imágenes y la programación del puzle es Ángel Cabezudo Bueno es y tiene licencia CC BY-NC-SA 3.0

El puzle giratorio básico tiene su origen en una documentación aportada por Juan Guillermo Rivera Berrío.

Gracias por la atención que ha recibido este tercer personaje y no os perdáis el podcast del próximo que emitiremos el  día 8 de septiembre en este blog de difusión.

Descarga del puzle

Valora este artículo
(2 votos)

En los tres artículos publicados anteriormente de esta misma serie hemos tratado y por este orden el Ortocentro, el Baricentro y el Circuncentro.

Con el Incentro, que hoy es el motivo de este artículo, terminamos la serie de puntos notables que estaba prevista.

Utilizamos como recurso didáctico, al igual que en los anteriores casos, un puzle de arrastre que una vez armado muestra una imagen donde intervienen como elementos de la composición las bisectrices interiores a un triángulo, el incentro, la circunferencia inscrita y texto. Además cuando se completa el puzle se repasa la definición de bisectriz y se enumeran algunas propiedades que invitan a la reflexión y a visitar dos materiales de consulta donde se puede encontrar respuesta a distintas cuestiones a través de la interacción con las escenas de DescartesJS y de Geogebra y con las explicaciones que allí se recogen.

La siguiente imagen lleva un enlace al puzle que se abrirá en una nueva ventana.

Puzle incentro

Una vez completada la publicación de la serie  de puntos notables del triángulo, se integrarán todos estos materiales en una unidad que llevará por título “Puzles geométricos: Puntos notables del triángulo” y donde además se pondrá como reto armar un nuevo puzle para obtener la Recta de Euler, donde se sitúan curiosamente el ortocentro, el baricentro y el circuncentro que será motivo para nuevas reflexiones sobre la geometría del triángulo.

Descarga del puzle.

Valora este artículo
(0 votos)

¿Quién es el personaje misterioso?Tercera entrevista de este espacio donde conoceremos mejor la parte humana de los matemáticos ilustres a lo largo de la historia. Durante la entrevista, el personaje, en este caso un sabio matemático, geógrafo y astrónomo del siglo III a.n.e, irá desvelando datos sobre su vida y obra.

Estos datos permitirán al oyente averiguar su identidad. Te invitamos a que dejes un comentario sobre la identidad del personaje. Publicaremos todos los comentarios recibidos pero sin indicar el nombre del matemático, así dejaremos al resto de participantes con la expectativa hasta el final. ¿Te animas?

Tras la semana de reflexión, el lunes 18 de agosto, publicaremos la solución a través de un puzle que nos mostrará la imagen de este tercer personaje misterioso.

El entrevistador y autor del guion es Ángel Cabezudo Bueno y el profesor José Antonio Salgueiro González interpreta al ilustre y culto personaje que viene del más allá. Ambos son socios colaboradores de Red Educativa Digital Descartes. El trabajo lleva licencia CC BY-NC-SA 4.0

Los efectos de sonido pertenecen al Banco de imágenes y sonidos del INTEF-MECD-ESPAÑA, tienen licencia CC BY-NC-SA 3.0 y han sido adaptados para esta ocasión.

 El montaje del audio ha corrido a cargo de Ángel Cabezudo Bueno y se ha realizado con la aplicación Audacity 2.0.4.

 

Viernes, 08 Agosto 2014 00:00

Calculando con matrices. Un_100

Escrito por
Valora este artículo
(1 Voto)

¿Introducir operaciones con matrices de forma visual e interactiva?

En la unidad Operaciones con matrices encontramos una forma atractiva para introducir este tema. Se trata de una unidad perteneciente al proyecto Un_100, un proyecto de la Red Educativa Digital Descartes que recoge unidades didácticas interactivas de matemáticas y física para un nivel de Bachillerato y Universidad.

Cabe destacar que en la elaboración de las unidades de este proyecto han participado académicos de México, España, Colombia y Chile.

La unidad operaciones con matrices, como en todas las unidades pertenecientes a este proyecto, consta de cuatro fases: Motivación, Inicio, Desarrollo y Cierre. En el siguiente vídeo podemos ver con detalle las actividades que conforman cada una de sus fases. También se muestran diferentes opciones para insertar esta unidad en nuestra aula virtual moodle.

Valora este artículo
(1 Voto)

Se presenta la miscelánea: Resto de Lagrange

Esta escena analiza el resto de la aproximación de una función derivable n veces en un punto a por su polinomio de Taylor de grado n a partir de la expresión del resto debida a Lagrange.

Esta expresión es una generalización del teorema del valor medio del cálculo diferencial y permite, en algunos casos, acotar el error de la aproximación de una función por su polinomio de Taylor.

Para la utilización de esta miscelánenea se debe introducir la expresión de la función, su derivada de orden n y los puntos a y x que se corresponden, respectivamente, con el punto en el que se hace el desarrollo y el punto en el que se quiere estudiar la aproximación. A partir de estos datos se puede calcular el polinomio de Taylor de cualquier grado centrado en el punto a siempre que la función sea suficientemente derivable en un dicho punto.

El vídeo siguiente explica el funcionamiento de esta escena.

Acceso a la miscelánea: Resto de Lagrange

Valora este artículo
(2 votos)

Se presenta la miscelánea: Polinomios de Taylor

Con esta escena se pueden obtener los polinomios de Taylor hasta el grado 4 de cualquier función que sea lo suficientemente derivable en un punto a.

Se representa además, en una misma gráfica, la función y los distintos polinomios de Taylor calculando sus valores en puntos x que son próximos al punto en el que se hace el desarrollo, punto a. El objetivo es poder observar la tesis del teorema de Taylor viendo que el valor de la función en un punto x se puede aproximar por el valor que toman los distintos polinomios de Taylor en dicho punto. Puede también comprobarse que esta aproximación es mejor cuanto mayor sea el grado del polinomio y cuanto más próximo esté x del punto a.

El vídeo siguiente explica el funcionamiento de esta escena.

 

Enlace a la miscelánea: Polinomios de Taylor

Valora este artículo
(2 votos)

Publicamos hoy el segundo artículo dedicado a compartir y difundir algunas propuestas didácticas para el desarrollo de la comunicación audiovisual en nuestro alumnado a través de las Matemáticas con Descartes.

Con objeto de fomentar en nuestros alumnos y alumnas el aprendizaje de las técnicas necesarias del lenguaje cinematográfico y audiovisual, a la vez que proporcionarles una formación básica que les permita, de forma autónoma, generar y producir sus propios contenidos audiovisuales, el Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija (Sevilla), ha puesto en marcha esta experiencia con alumnos y alumnas del primer curso de Bachillerato, que nunca habían afrontado una tarea de similares características y menos aún desde esta materia.

Grosso modo, como producto final, debían presentar un vídeo con la ejecución técnica de ejercicios, actividades o problemas propuestos en una de las páginas del Proyecto Descartes relacionadas con los contenidos tratados en el aula, procurando alternancia entre los mundos real y virtual. Esta producción audiovisual está inspirada en la página "Identidades trigonométricas fundamentales: pitagóricas", del libro interactivo dedicado a la Trigonometría en el Proyecto iCartesiLibri, que cuenta además con Cálculo diferencial y Cálculo integral: integrando con Paco.

Página 74 de 104

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information