buscar Buscar en RED Descartes    

Valora este artículo
(10 votos)

Lugares geométricos: Caracol de Pascal II.

Continuamos con el estudio del l.g. "Caracol de Pascal". Este l.g. procede directamente de los lugares geométricos estudiados en la Grecia clásica: la Cisoide de Diocles, la Concoide de Nicomedes, la Espiral de Arquímedes, la Duplicatriz de Hipócrates, la Trisectriz de Hipias... que han sido analizados en entradas anteriores en este blog, de hecho, para ciertos valores de los parámetros que lo definen adopta la forma de la cardioide o la funcionalidad de la trisectriz.

De especial interés, para adentrarse en el contexto cultural que promueve el estudio de este lugar geométrico, es observar la producción pictórica del artista alemán Alberto Durero centrando la atención en los motivos geométricos, implícitos y explícitos, que muestra en la mayoría de sus obras.

Para profundizar en el estudio del lugar geométrico y en el de la creación de escenas con el editor DescartesJS, hemos elaborado, a modo de resumen, una escena que recopila parte de las mostradas en la entrada anterior y donde se hace una introducción al estudio de la ecuación cartesiana del caracol generado por el método de la curva plana de tipo ruleta. Esto puede observarse en la siguiente utilidad navegando por las definiciones y en concreto activando la "definición 4" y actuando sobre los controles y botones de la escena para ver las distintas ecuaciones, formas y maneras de generar el lugar geométrico caracol de Pascal.


definiciones.

Para los lectores menos familiarizados con el proceso de creación de escenas DescartesJS indicamos que:

  • Si se observan trazos o gráficas, generalmente de color rojo, no justificados, o se desea volver a ver la generación del l.g. es suficiente con pulsar el botón limpia, que quitará de la escena los trazos indeseados.
  • El botón zum ajusta el tamaño de la parte visible de la escena. Este botón al ser activado limpia, de forma predeterminada, la escena.
  • Los pulsadores a y b controlan la forma del caracol, el botón inicio reinicia la escena y el botón créditos muestra la autoría de la utilidad.

Como en anteriores ocasiones indicamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

La escena que exponemos a continuación muestra como al ser a = b el caracol de Pascal puede usarse como trisector de ángulos gracias al lazo interior del mismo.

Hemos construido la escena de forma que un control gráfico, A, con el que podemos interactuar desplazándolo por el l.g. en el 1º y 2º cuadrante (notar la simetría) y así definir el ángulo que se desea trisecar con lo que, automáticamente, uniendo el punto A con los extremos horizontales del lazo interior, se obtiene la trisección.

La utilidad admite, como en casos anteriores, una amplia gama de modificaciones y generalizaciones, de fácil implementación, para adecuarse al propósito particular de uso.

Cuando el control A se encuentra sobre la parte superior del lazo se hace una proyección del mismo en la rama exterior del caracol y se determina la trisección del ángulo de la forma habitual.


Caracol como trisectriz.

En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con el propósito de que, analizando los cambios en el proceso de creación de las utilidades se adquiera destreza en el uso de dichos procesos y el necesario conocimiento de ambas plataformas para discernir cuando implementar la interacción que señala la profesora Elena E. Álvarez Sáiz en sus extraordinarios e innovadores artículos en el blog, donde documenta y ejemplifica la manera de llevar a cabo la inclusión del cálculo simbólico mediante GeoGebra en las escenas DescartesJS.

Notar que en la siguiente utilidad hemos alterado el nombre y significado de algunos parámetros.


definiciones

En la siguiente escena se usa el caracol de Pascal como trisector de ángulos .

Debemos advertir que en esta ocasión también se ha cambiado el significado de los parámetros, aunque igual que en la ocasión anterior están perfectamente especificados los cambios en la información que se muestra


caracol trisector

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

En la sección de vídeo, hemos elegido uno que trata sobre la identificación de la ecuación, en coordenadas Polares, del  caracol de Pascal y algunas de las definiciones que identifican este l.g. así como su construcción con el programa GeoGebra. El objetivo  es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Los Lugares Geométricos".

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2016

 

Viernes, 09 Diciembre 2016 00:22

Introducción al cálculo integral

Escrito por
Valora este artículo
(6 votos)

Un_100 es un proyecto de la RED que recoge unidades didácticas de matemáticas y física para el bachillerato y la universidad.

Los materiales están clasificados por temas y todas las unidades se han desarrollado utilizando el mismo esquema o plantilla común, se organiza la información en cuatro fases: motivación, inicio, desarrollo y cierre.

En este vídeo vamos a ver con detalle la unidad cálculo integral que consta de una serie de actividades de introducción al cálculo para bachillerato y los primeros cursos universitarios. Esta unidad contiene muchos ejemplos de muestra y diferentes tipos de ejercicios autocorregibles lo cual permite al alumnado practicar según sus necesidades favoreciendo así su aprendizaje.

Viernes, 02 Diciembre 2016 00:00

EDAD 4ºESO Aplicadas - Problemas geométricos

Escrito por
Valora este artículo
(1 Voto)

Es te mes vamos a ver la unidad de "Problemas geométricos" de 4ºESO Enseñanzas Aplicadas dónde se tratan las áreas de fuguras planas y áreas y volúmnes de cuerpos geométricos:

Como hemos dicho, hemos tratado estos temas:

1.Figuras planas
   Triángulos
   Paralelogramos
   Trapecios
   Trapezoides
   Polígonos regulares
   Círculos, sectores y segmentos

2.Cuerpos geométricos
   Prismas
   Pirámides
   Troncos de pirámides
   Cilindros
   Conos
   Troncos de conos
   Esferas

Valora este artículo
(6 votos)

Lugares geométricos: Caracol de Pascal.

Continuando con el estudio de los lugares geométricos y sus utilidades se exponen a continuación una serie de escenas de introducción al estudio del l.g. conocido como Caracol de Pascal. Este l.g. está directamente relacionado con otros lugares geométricos estudiados en la Grecia clásica y analizados en entradas anteriores en este blog. De hecho, para ciertos valores de los parámetros que lo definen adopta la forma de la cardioide o la funcionalidad de la trisectriz.

Han sido muchos los científicos y artístas que, por diferentes motivos, han estudiado esta curva, entre ellos destacan: Étienne Pascal, su amigo Gilles Personne de Roberval (Roberval es una importante comarca en la región francesa de Picardía) y el artista y pintor alemán Alberto Durero. Cada uno de ellos consiguió sus diferentes objetivos probando así la versatilidad de estos lugares geométricos, característica esta que los define.

Las siguientes escenas tienen un doble propósito: servir de plantilla para un desarrollo más amplio relacionado con el tema y ser la introducción al estudio del l.g. de forma pausada y atendiendo a algún aspecto o consideración particular del mismo como la definición, generación o tipo de ecuación utilizada.

En primer lugar se exponen las gráficas de las curvas:

(x2+y2-2·a·x)2=b2·(x2+y2)   y su simétrica   (x2+y2+2·a·x)2=b2·(x2+y2)

en principio para el caso partícular de a=1 y b=2, esto es  b=2·a  donde el l.g. coincide con el de la cardioide.

Las ecuaciones anteriores derivan directamente de las definiciones siguientes:

Definición 1.

El Caracol de Pascal es el l.g. formado por los puntos de la podaria de una circunferencia respecto a un punto. (esta afirmación puede comprobarse activando la animación de la siguiente escena)

La utilidad, que evidentemente es una plantilla, es fácilmente adaptable y admite las modificaciones y/o ampliaciones que el usuario considere convenientes para su uso personal.


escena 1.

A continuación, y dedicado a los lectores interesados en el proceso de creación de escenas DescartesJS mostramos la escena anterior con algunas modificaciones.

Se evidencia que las escenas están carentes de estilo. La intención es que el usuario se documente, tal y como hemos descrito en artículos anteriores, e implemente los formatos y colores que considere más adecuados.

La escena es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos de uso.


escena 2.

En el siguiente trabajo presentamos otra versión de la escena anterior con el propósito de que, analizando los cambios respecto a la escena inicial, se facilite el procedimiento de generalizar el funcionamiento de esta.

Repetimos lo dicho anteriormente: la escena permite, con cierta facilidad, todas las modificaciones que se consideren necesarias.


escena 3.

En la tercera escena se añaden más cambios respecto de la anterior insistiendo en la importancia de elaborar  utilidades de carácter genérco; o bien como sugerencia de tipo de ejercicio de traslación y/o simetría en el plano.

En la cuarta escena, para generar el l.g. se ha usado la siguiente definición:

Definición 2.

El Caracol de Pascal es el l.g. definido por los puntos P y Q equidistantes del punto M, de la circunferencia c1, en la cuerda de la misma AM cuando M recorre dicha circunferencia.

Puede comprobarse la generación del l.g. activando la animación de la escna 4.


escena 4.

Proponemos al lector el análisis del significado de los parámetro a y b en esta última escena y de que, efectivamente, cuando ambos tienen el mismo valor el l.g. puede usarse como trisector de ángulos.

En la siguiente escena hemos obtenido el l.g. considerando el carácter de curva ruleta del Caracol de Pascal.

Definición 3.

El Caracol de Pascal es la curva plana de tipo ruleta formada por la trayectoria de un punto fijo, D, de una circunferencia que gira sobre si misma y alrededor de otra sin deslizar.

En esta escena, cuando h=3, se introduce el uso de la ecuación polar, ρ = a + b·cos(θ), del Caracol de Pascal.


escena 5

A continuación incluimos una pequeña utilidad que obtiene la podaria de una circunferencia.


Podaria

Un ejercicio interesante es la generalización del funcionamiento de la escena anterior para cualquier radio de la circunferencia y posición del punto.

En esta ocasión, en la sección de vídeo, hemos elegido uno que trata sobre la identificación de la curva en coordenadas Polares y estudio de las simetrías de un caracol con lazo. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Los Lugares Geométricos".

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas completaremos el estudio del Caracol de Pascal y abordaremos el de otros lugares geométricos.

Se ha incluido el Mesolabio de Eratóstenes con objeto de animar a su uso para adquirir destreza y poder usarlo, por ejemplo, en los temas de semejanza en el plano.

Relacionado con el tema del l.g. expuesto mostramos estas interesantes aplicaciones:

Geogebra. Uso de la ecuación polar para hacer la gráfica del Caracol de Pascal


Construcción del péndulo isocrono.


péndulo

En próximas entradas continuaremos con el paso a paso del estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:


Ildefonso Fernández Trujillo. 2016

 

Página 24 de 41

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information
Filter: