Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.
Como muestra enlazamos la unidad sobre Crecimiento Exponencial, del subproyecto TELESECUNDARIA,
la GEOevaluación de los estados y ciudades de México.
y el ejemplo de: Asocia parejas de imágenes y textos (2).
Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D en particular los materiales de 2º y 4º LOMCE y las adaptaciones de los trabajos de Javier de la Escosura Caballero: "Geometría dinámica del trángulo" que enlazamos a continuación
y el de Cuadrilateralia, donde se fomenta el estudio y conocimiento de las características matemáticas de los objetos mediante la manipulación virtual de los mismos y que enlazamos con la imagen siguiente.
Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el primero de los métodos para trisecar un ángulo con la Concoide de Nicomedes. El ángulo a trisecar es el formado por el eje polar y la recta que une el polo con el punto que se desplaza por la directriz.
El análisis de la escena y su modificación, fundamentalmente en la situación del tercio del ángulo mencionado anteriormente, nos lleva a descubrir interesantes características de la Concoide. También son interesantes las modificaciones funcionales que mejoren las prestaciones de la utilidad.
Mencionar, por último, que la escena es copia de la que en su día publicó el profesor Pedro González Enríquez en su trabajo sobre las trisectrices.
Entradas anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por uno y dos puntos y algunas de las utilidades de los l.g. generados por un punto, en la actual comenzamos a mostrar algunos de los usos de la Concoide.
En esta ocasión, en la sección de vídeo, hemos elegido, debido a su calidad e interés, el mismo que en la entrada anterior, que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografías y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Lituus" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Lituus incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y la trisección del ángulo, hemos incluido los trabajos realizados con el programa GeoGebra donde se muestran dos metodos para trisecar un ángulo con la Concoide de Nicomedes.
Método 1.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
El subproyecto Miscelánea de la Red está formado por escenas aisladas que se pueden utilizar como complemento a los contenidos que se estén trabajando en el aula, ya sea para reforzar, consolidar o ampliar conocimiento.
En el siguiente vídeo se muestra con detalle una unidad perteneciente a dicho subproyecto y como insertar este objeto en un curso Moodle para su aplicación en el aula.
La unidad PISA. Sistemas de ecuaciones que hoy se presenta ha sido creada en base a las indicaciones para la elaboración de las pruebas PISA de 2000 - 2003 en el área de las ciencias aplicadas. Se plantean temas relacionados con la observación científica de situaciones reales (en este caso mezclas y aleaciones) para su traducción a lenguaje algebraico. En todos los ejercicios se introducen mecanismos para evaluar la respuesta y que sirvan también de guía al alumno, incluso aunque la respuesta sea correcta.
Este mes vamos a ver una unidad de 4ºESo Matemáticas Aplicadas correspondiente a Problemas aritméticos
en este vídeo hemos tratado los siguientes puntos:
1.Proporcionalidad directa e inversa
Proporcionalidad directa
Proporcionalidad inversa
Repartos proporcionales
Proporcionalidad compuesta
2.Porcentajes
Porcentajes
Aumentos y disminuciones
Porcentajes sucesivos
3.Interés simple y compuesto
Interés simple
Interés compuesto
Tasa anual equival
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.
Como muestra enlazamos la unidad sobre Ángulos en la circunferencia, del subproyecto TELESECUNDARIA,
la GEOevaluación de Asia
y los ejemplos de Puzle de intercambio de imágenes tipo 2 donde Descartes realiza directamente el troceado en 4x4 de las imágenes, del subproyecto PLANTILLAS.
Dentro de nuestro ámbito local destacan, entre otras, las Misceláneas sobre las espirales y los lugares geométricos, todas ellas de indudable valor en cuanto establecen un hito en el estudio de estos objetos matemáticos. Se muestran y/o enlazan a continuación: una escena prolegómeno del estudio del l.g. "Concoide de Nicomedes" para más adelante ver su uso en la trisección de un ángulo, una miscelánea, que es un estudio riguroso y completo sobre las espirales logarítmicas y una segunda que complementa a la anterior. La excelente documentación aportada por ambas es una extraordinaria introducción a estudios más complejos de estos objetos y a la creación de utilidades educativas, dinámicas e interactivas.
Artículos anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por un punto, el actual muestra, según hemos visto, la creación de la Concoide de Nicomedes que es un l.g. definido por dos puntos, cuya posición depende del desplazamiento de un tercer punto por un eje. En próximas entradas se mostrará como trisecar un ángulo agudo con la Concoide.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografias y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral Logarítmica" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral Logarítmica incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades, hemos incluido el trabajo realizado con el programa GeoGebra donde se muestra la construcción de la Concoide de Nicomedes para, más tarde, usarla en la trisección de un ángulo.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
En el vídeo de esta semana se presenta un nuevo objeto digital con actividades interactivas para estudiar la relación entre ángulos y circunferencia y sus propiedades.
Se trata de una unidad que forma parte del subproyecto Telesecundaria, un nuevo subproyecto de la Red que contiene numerosos objetos de aprendizaje desarrollados con la herramienta DescartesJS para Telesecundaria, una modalidad del sistema educativo de México.
La unidad Ángulos y circunferencia pertenece al grupo de unidades de Matemáticas para 3º de Secundaria.
En su desarrollo encontramos tres fases:
Exploración, para observar, modificar y definir las diferentes posiciones de un ángulo respecto de una circunferencia.
Medición, se dispone de herramientas para medir la amplitud de un ángulo central y un ángulo inscrito que comparten un mismo arco de circunferencia y comprobar la relación entre ellos.
Finalmente, en Propiedades, se guía al alumno para la demostración de la relación entre ángulo central y ángulo inscrito a partir de tres situaciones distintas que permiten generalizar todos los casos posibles.
Este mes vamos a ver la siguiende unidad:
Hemos visto los siguientes puntos:
1. Vocabulario estadítico
Población, muestra, individuo y carácter
2. Carácter. Variable estadística
Carácter cualitativo. Atributos
Variables discretas
Variables continuas
3. Ordenación de datos. Tabulación
Para variable discreta
Para variable cualitativa
4. Gráficos para una variable cualitativa
Diagrama de barras
Diagrama de sectores
5. Gráficos para una variable discreta
Diagrama de barras
Polígonos de frecuencias
Diagrama de sectores
6. Medidas de centralización
Media
Mediana
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades al subproyecto TELESECUNDARIA.
Como muestra, enlazamos la unidad sobre superficies de revolución
También es continuo el flujo de aportación de unidades al apartado GEOevaluación del subproyecto GEOgráfica
En esta ocasión enlazamos la Evaluación de los Estados Unidos de América
Dentro de nuestro ámbito local destacan, entre otras, las Misceláneas sobre las espirales, todas ellas de indudable valor en cuanto establecen un hito en el estudio de estos lugares geométricos aunque, en particular, es de especial interés la creada por Ángel Cabezudo Bueno ya que, además de ser la primera de la serie actual, entronca directamente con la fuente origen de dicha serie, el trabajo de José R. Galo Sanchez sobre las proporciones, la belleza en las Matemáticas y la espiral Cordobesa y es consecuencia de la acertada propuesta de espiral gnomónica Cordobesa, ambas: propuesta y miscelánea se muestran y/o enlazan a continuación.
El artículo anterior mostraba, paso a paso y exhaustivamente escenas interactivas con la creación de un lugar geométrico (l.g.) por un punto común a dos segmentos y por un punto que se mueve linealmente en un segmento mientras este gira alrededor de uno de sus extremos, el actual vuelve a construir la espiral de Arquímedes y también paso a paso e interactivamente muestra como trisecar un ángulo cualquiera y como hallar la cuadratura de cualquier círculo.
A continuación se exponen las escenas interactivas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la relación de la espiral con la orografía y la interpretación de las señales cosmológicas por las diferentes culturas con objeto de apreciar distintas formas de enfocar el tema que nos ocupa.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral Hiperbólica" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral Hiperbólica incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades, hemos incluido los siguientes trabajos realizados con el programa GeoGebra: en el primero se muestra el uso de la espiral de Arquímedes para la trisección de un ángulo y en el segundo para la cuadratura del círculo.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Hoy presentamos dos actividades de iniciación a las ecuaciones pertenecientes a Telesecundaria, un nuevo subproyecto de la Red que contiene una serie de objetos de aprendizaje interactivos con contenidos de matemáticas, física y química para secundaria. Han sido desarrollados en México con la herramienta Descartes para la modalidad educativa de este país que se denomina Telesecundaria.
Accedemos a la página web de este proyecto desde el apartado subproyectos del blog de la Red.
En este caso hemos seleccionados dos unidades para introducir las ecuaciones que pueden ser aplicables en los primeros cursos de secundaria. Se trata de ecuaciones sencillas con las operaciones de suma, resta, multiplicación y división.
En los ejercicios propuestos, el alumnado debe calcular el valor de la incógnita realizando la operación contraria a la propuesta en la ecuación. Se trata de actividades autocorrectivas ya que, una vez escrita la solución en la escena, se muestra el resultado y se puede comprobar si la respuesta es correcta o no.
En el siguiente vídeo también se propone la inserción de estas actividades en un blog didáctico, aunque el procedimiento sería similar en el caso de utilizar una wiki, una página web, un curso moodle o cualquier otro espacio virtual que disponga de la opción de editar en formato html.
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca el subproyecto TELESECUNDARIA.
En palabras del encargado de la presentación del subproyecto en el Blog, Ángel Cabezudo Bueno, "Telesecundaria es una modalidad de los estudios de educación secundaria en el Sistema Educativo de México dirigido a estudiantes adolescentes de 12 a 15 años que viven en comunidades dispersas que carecen de escuela de secundaria.
Se utilizan para ello los avances en tecnologías de la información y comunicación (TIC) como recurso para acercar esta formación a los jóvenes y puedan concluir su educación básica.
En este subproyecto de RED Descartes se han recogido objetos de la Telesecundaria desarrollando los correspondientes materiales con la herramienta Descartes. Las asociaciones de Colombia y España han sido las encargadas de preparar la adaptación a DescartesJS y en consecuencia todos podrán ser consultados en cualquier dispositivo con sistema operativo que admita un navegador compatible con HTML5." los primeros materiales pueden verse y descargarse siguiendo el enlace gráfico siguiente.
Dentro de nuestro ámbito local queremos destacar, entre otros, los siguiente materiales:
La miscelánea anterior muestra, paso a paso, la creación de un lugar geométrico (l.g.) por un punto que se mueve linealmente en un segmento mientras este gira alrededor de uno de sus extremos. Existen otros muchos lugares geométricos, entre los clásicos y más conocidos destaca la Trisectriz de Hipias que junto con la espiral de Arquímedes se ha usado, además de para otras utilidades, para la trisección de cualquier ángulo. A la Trisectriz de Hipias también se la llama Cuadratriz de Dinóstrato debido a que este geómetra usó el l.g. para la cuadratura del círculo. La Trisectriz (o Cuadratriz) es el l.g. generado por el punto común a dos segmentos uno de los cuales gira alrededor de uno de sus extremos y el otro se desplaza horizontalmente según muestran las siguientes escenas:
Conviene analizar las escenas anteriores, reproducirlas y/o mejorarlas y ver la forma de integrarlas en la miscelánea sobre las espirales.
En próximas entradas en el Blog completaremos el estudio de uso de la Cuadratriz y veremos la manera de trisecar un ángulo y cuadrar el círculo con la espiral de Arquímedes.
En esta ocasión, en la sección de vídeo, hemos elegido uno muy particular que muestra la manera de dibujar la Trisectriz de Hipias (Cuadratriz de Dinóstrato) con ¿regla y compás? con objeto de apreciar diferentes formas de enfocar el tema que nos ocupa. Buscando en internet se pone de manifiesto el enorme interés que suscitan, aún hoy en día, los problemas clásicos de la Geometría Griega.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Fermat" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Y desde este enlace descargar el proyecto con la espiral de Fermat incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades hemos incluido dos trabajos, realizados con el programa GeoGebra, uno muestra el uso de la espiral de Arquímedes para la trisección de un ángulo y en el otro, enlazado en la imagen que sigue a la trisección, se lleva a cabo la cuadratura de un círculo de forma dinámica.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Bibliografía.- Para la realización de esta entrada y siguientes ha sido de gran ayuda la siguiente información:
Ildefonso Fernández Trujillo. Blog ReDescartes 2016
Este mes vamos a ver la unidad de Estadística de 4ºESO Opción B:
En este unidad se tratan los siguientes apartados:
1.Estadística descriptiva
Población y muestra.
Variables estadísticas.
Gráficos v. cualitativas.
Gráficos v. c. discretas.
Gráficos v. c. continuas.
2.Medidas de centralización
Media, moda y mediana.
Evolución de la media.
Evolución de la mediana.
Media y mediana comparadas.
Medidas de posición.
3.Medidas de Dispersión
Desviación típica y recorrido.
Calcula las medidas de dispersión.
La media y la desviación típica.
4. Representatividad
Muestreo estratificado.
Muestreo aleatorio. Sesgo.