buscar Buscar en RED Descartes    

Mostrando artículos por etiqueta: espirales

En el primer verticilo del Nautilus encontramos algunos sitios que podemos catalogar como singulares, pues se muestran como específicos respecto a su entorno o que aparentemente se salen de la uniformidad cordobesa que hemos ido detectando y desgranando en los artículos publicados anteriormente sobre la "Ontogenia matemática del Nautilus". Pero, hasta en estas situaciones, la proporción cordobesa y la espiral cordobesa aparece sin más que rascar matemáticamente en la concha del Nautilus, por supuesto con gran mimo.

Esos sitios singulares son:

  • La concha embrionaria.
  • El sifúnculo en la segunda cámara septal y su relación con la ampliación del fragmacono en el primer septo.
  • La confluencia de la pared dorsal con la concha embrionaria en la fase de transición entre el primer y segundo verticilo (cámaras octava, novena y décima).
ModeloConchaEmbrionaria  ModeloSifunculoSegundaCamara  ModeloTransicionPrimerSegundoVerticilo 
La concha embrionaria El sifúnculo en la segunda cámara septal
y la ampliación del fragmacono
La pared dorsal en la transición
entre el primer y segundo verticilo

 

En este artículo analizamos estas singularidades y encuadramos su modelado en el contexto cordobés del Nautilus. Para ello, acudimos y aplicamos la invariante enunciada desde el inicio y que reiteradamente hemos ido aplicando en toda la modelación: "Todo punto interior a la concha o sobre ella se obtiene como la intersección de dos espirales cordobesas, una longitudinal similar a la ventral y otra transversal similar a la septal". La siguiente escena interactiva ha servido de base para el análisis de estos sitios singulares. 

ModeloSitiosSingularesEscena8

Modelando los sitios singulares del Nautilus en el primer verticilo 
Pulsad sobre la imagen para acceder a la escena

 

En el siguiente pdf (o desde este enlace) tienen desarrollados los contenidos de este artículo

Ontogenia matemática del Nautilus VII



 

Aquí, hemos dado continuidad a los artículos anteriores (I, II, IIIIVV y VI) y por fin, creo, he cumplido mis deberes, si bien no seré yo quien excluya la posibilidad de que puedan surgir nuevas cuestiones, pues eso es lo que ha ido aconteciendo a lo largo de estos meses en los que les he ido relatando mi investigación a través de este blog de RED Descartes. Pero, independientemente de que afloren nuevas cuestiones o no, sí les indico que éste no será este el último artículo de esta serie, tengo que tratar de completarla adecuadamente y, por tanto, estimo necesario recopilar todo lo expuesto en una escena interactiva de Descartes o en una animación o en un gif animado o en un recurso similar o... y así mostrar la ontogenia matemática del Nautilus en un hilo temporal que recoja su crecimiento, si bien real y paradójicamente éste ha de ser atemporal porque en la literatura existente los datos relativos a los tiempos en el crecimiento de la concha son muy genéricos o yo no he logrado localizarlos. En la siguiente animación reflejamos el modelo uniforme del Nautilus y próximamente podremos aportar el modelo ontogénico (de nuevo les pido un poquito más de paciencia, no nos demos un atracón que pueda conducir a una indigestión).

 

ModeloNautilus

Modelo uniforme del Nautilus 

Y también tendremos que desarrollar alguna cosita en 3D ¿no les parece?... Hasta pronto...

 


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

 

Publicado en Difusión

 

Septos del Nautilus en el primer verticilo. Puntos notables.

Título: Septos del Nautilus en el primer verticilo. Puntos notables.
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea

 

Modelo tangencial de los septos y de la pared ventral en el segundo y tercer verticilo del Nautilus

Título: Modelo tangencial de los septos y de la pared ventral en el segundo y tercer verticilo del Nautilus
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea

En este nuevo artículo sobre la ontogenia matemática del Nautilus, después de haber modelizado los septos en el segundo y tercer verticilio bajo el invariante de tangencialidad, nos adentramos en la modelización de los septos en el primer verticilo. Esta primera fase de crecimiento vimos que se muestra diversa y con apariencia poco regular, cambiante (menor número de cámaras septales,  ocho frente a las dieciséis de la etapa juvenil y adulta, con secciones y amplitudes que cambian como necesidad biológica para alcanzar la flotabilidad) y, ahora, ha llegado el momento de mostrar el modelo matemático que da explicación a esta etapa e introduce la regularidad esperada que parecía no acaecer, pero que queda al descubierto bajo la perspectiva matemática. De nuevo, el hecho de que intervengan dos espirales con diferente polo, en este caso  la espiral de la pared ventral y la espiral de los polos de los septos, conduce a proporciones variables entre los radios vectores y consecuentemente a que se formen septos con factores de escala variables. Ello nos conduce y permite determinar las ecuaciones de los septos, los puntos de tangencia con la pared ventral y los de intersección con la pared dorsal (para ello necesitaremos introducir un grosor en el modelo matemático de esa pared, que es lo que físicamente acontece).

Completaremos el contenido de este documento agrupando y relacionando entre sí diferentes puntos que se han ido detectando en este análisis. Unos que denominamos notables, porque matemáticamente son los que establecen el modelo matemático y dan explicación causal al mismo, y que son polos de diferentes espirales. Y otros que catalogaremos como destacables, posible fuente de inspiración matemática futura, y que son centros desde los que algunos objetos se observan con perspectiva angular constante.

  Nautilus vi
 Propociones entre los radios vectores de la espiral ventral y los de la espiral de los polos de los septos  Puntos notables y destacables

 

Así pues, doy continuidad a los artículos anteriores (I, II, IIIIV y V), con un contenido adicional que espero sea de su interés —¡para mí es siempre una satisfacción! ir pudiendo relatarles progresivamente lo que, poco a poco, me cuenta la concha de este animalito—, y he de adelantarles que serán necesarios algunos artículos adicionales porque aún nos quedan secretos que dilucidar en esta ontogenia, en particular lo que acontece en la transición de la fase embrionaria (primera y segunda cámara septal) donde el sifúnculo cambia abruptamente de posición, y en la fase de transición entre el primer y segundo verticilo (cámaras octava, novena y décima) donde al finalizar la primera vuelta se produce el encuentro del fragmacono con la concha embrionaria. Y también habrá que abordar la síntesis o resumen final, es decir, plasmar y reproducir ese modelo ontogénico de la concha del Nautilus.

 SitioSingularesNautilus 
El sifúnculo en la segunda cámara septal  Transición entre el pimer y segundo verticilo 

 

Como observamos, una mirada atenta y un continuo deseo de comprensión nos hace ir visualizando cada vez más detalles que inicialmente pueden parecer nimios, pero que finalmente se han ido mostrando como retos cuya resolución es de interés. Todo ello, a costa de que a ustedes a lo mejor les ocurra como a mi sobrina nieta (Aurora, cerca de los cuatro años) que ayer, al verme una vez más delante de la pantalla de mi ordenador, indagando la imagen de la sección del Nautilus con diversos objetos matemáticos superpuestos, la cual ya ha observado en multitud de ocasiones y quizás hayan sido demasiadas para ella, dijera: "¡Tita!, ¡el tito todavía no ha hecho sus deberes!". Por tanto, espero poder ir finalizando mis deberes, que realmente no son más que satisfacciones aunque requieran esfuerzo y dedicación, y que en el trancurso hacia su final les pueda tener como lectores y juntos podamos desarrollar nuestra vocación como  μαθηματικός (mathēmatikós) o amantes del conocimiento. 


En el siguiente pdf (o desde este enlace) tienen desarrollados los contenidos de este artículo

Ontogenia matemática del Nautilus VI



Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión

En nuestro modelo uniforme del Nautilus (Galo et al. 2016) detectamos que los septos son arcos de espirales cordobesas y, adicionalmente, que sus respectivos polos estaban ubicados también en una espiral cordobesa. Ése fue, quizás, el mayor y más novedoso avance logrado en la modelación de esta concha. No obstante, allí, no abordamos la evidente diferencia que acontece entre ellos según las etapas vitales de estos especímenes y, consecuentemente, lo que ocurre también en las cámaras septales que determinan. En especial, esas diferencias se presentan entre el primer verticilo y en los dos restantes. Allí, tampoco profundizamos en el modelado de las intersecciones de los septos con la pared ventral y la dorsal y sólo aventuramos una posible base teórica del fragmacono en base al gnomon de un triángulo cordobés. Ahora, habiendo profundizado en el estudio de la literatura existente sobre la ontogenia biológica del Nautilus y también en el análisis matemático del modelo propuesto entonces, es el momento de adentrarnos en un modelo matemático diferenciado por fases, es decir, de abordar la ontogenia matemática de los septos.

Siguiendo lo indicado en los artículos anteriores de esta serie (puede consultar: I, II, III y IV), y en particular en lo relativo a la modelación de la pared dorsal y ventral de la sección sagital de la concha, partimos de una base o fundamento primordial que es el que justifica y explica el distinto comportamiento de los septos entre el primer verticilo y los siguientes. En el primero, ambas paredes se corresponden con arcos de dos espirales cordobesas que tienen diferente polo, sin embargo, en el segundo y en el tercer verticilo las espirales de ambas paredes son copolares, tienen el mismo polo, siendo realmente arcos de una única espiral con un retardo angular entre ambas de 2π. Así pues, dado que la complejidad es mayor en el primer verticilo vamos a proceder en orden cronológico inverso y analizaremos en primer lugar el segundo y tercer verticilo y posteriormente el primero.

Los septos en el segundo y tercer verticilo

La pared ventral en el segundo y tercer verticilo viene dada por

ontogeniaf22       (20) 

donde θ es el ángulo que marca el inicio de la concha embrionaria  y θ la terminación de la misma delimitando la boca de la concha.

Y en el mismo instante[1] angular vital θ, la pared dorsal sería:

ontogeniaf502    (21)     

La espiral que contiene a los polos de los septos es:

ontogeniaf503     (22)

donde e es un factor de escala o de retardo en la espiral cordobesa [2].

Y cada septo, ver (11 en IV), es un arco de una espiral:

ontogeniaf504     (23)

donde ontogeniaf505determina la amplitud angular del arco de esa espiral que comprende el septo n-ésimo; ρ determina unívocamente cada uno de los puntos de dicho septo, pero todos ellos se corresponden con un mismo instante vital[3]; d es un factor de escala o de retardo a determinar en el modelo; y ontogeniaf506 es el polo de la espiral que incluye a ese arco septal n-ésimo y que perteneciendo a la espiral (22) quedará determinado por un valor αn.

La aplicación en el modelo de la que hemos denominado invariante tercera (tangencialidad entre la pared ventral y las paredes de los septos) nos puede llevar a determinar los parámetros antes citados. De partida:

  • Toda espiral logarítmica es equiangular, así pues, en cualquier punto de la espiral la recta tangente y el radio vector forman siempre un mismo ángulo ψ. Éste es característico de cada tipo espiral y depende sólo de la base b que la define, siendo ontogeniaf507. En el caso de una espiral cordobesa este ángulo es ψ ≃ 80,32º, al ser la base logarítmica o exponencial que la define κ = 1,185580...
  • Al ser tangentes la espiral ventral y la septal, ambas comparten la misma recta tangente. Y dado que ambas espirales son cordobesas entonces, consecuentemente, los radios vectores de ambas han de estar también en la misma recta, porque ambos han de formar el mismo ángulo con la tangente común.

 ontogeniaf508
(i) Espiral azul discontinua: pared dorsal en el segundo verticilo. (ii) Espiral azul continua y de puntos: pared ventral en el segundo verticilo.
(iii) Espiral magenta: espiral de los polos de los septos. (iv) Tn: punto de tangencia septo y pared ventral; Sn: polo del septo y P: polo común de la espiral dorsal, de la ventral y de la de los polos de los septos.
Fig. 40. Tangencialidad de los septos con la pared ventral. 

Por tanto (ver Fig. 40), si Tn es el punto de tangencia del n-ésimo septo (con n>8, pues en el primer verticilo hay ocho septos), Sn es el polo de éste y P el polo de la pared ventral, tenemos que:

  • Al ser Tn un punto de la espiral ventral, entonces: 

 ontogeniaf509        (24) 

para algún θ.

  • Al ser Sun punto de la espiral de los polos de los septos, por (22), 

ontogeniaf510      (25)

donde α = θ al estar alineados P, Sn, y Tn y ser P el polo común a la espiral ventral (20) y a la espiral de los polos de los septos (22).

  • Al ser Tn un punto del septo n-ésimo

ontogeniaf511   (26)

para algún valor de ρ.

Y dado que 

ontogeniaf512   (27)

de las relaciones anteriores, (24) a (26), obtenemos que:

ontogeniaf513.    (28)

Expresando en (28) d = d' κθ - ρ, es decir, considerando que ρ es un ángulo de retardo, tenemos:

ontogeniaf514    (29)

Y de ahí

d' = 1 - e.       (30)

 En Galo et al. (2016) detectamos que en la espiral de los polos de los septos (22) e ≃ 0,5 e igual acontecía para la espiral que da forma a los arcos de los septos. Aquí la relación obtenida en (30) conduce a considerar que e = 0,5 (exactamente ese valor[4]), pues en ese caso también es d' = 0.5, y consecuentemente la espiral correspondiente a un determinado arco septal se obtiene sin más que realizar una traslación de la espiral de los polos para que el polo de ésta coincida con el polo de dicho septo. (ver fig. 41).

ontogenia41

Fig. 41. Obtención de un arco septal como traslación de un arco de la espiral de los polos. 

Intersección de la pared dorsal y los septos en el segundo y tercer verticilo

Centrémonos ahora en la determinación de la intersección de los arcos de los septos con la pared dorsal y la amplitud de estos.

ontogenia42

Fig. 42. Parámetros que definen los septos en el segundo y tercer verticilo.

Para el septo n-ésimo, según la denominación de los ángulos reflejados en la fig. 42 y fijado el valor de e = 0,5, por (25) tenemos que:

ontogeniaf516     (31)

El punto Dn, intersección de ese septo con la pared dorsal, por pertenecer a ella y según (21) verifica que

ontogeniaf517    (32)

y, a su vez, por pertenecer al arco del septo:

ontogeniaf518     (33)

  • Aplicando el teorema del coseno en el triángulo de vértices P, Sn y Dn:

ontogeniaf519  (34) 

        y considerando las expresiones (31), (32) y (33) llegamos a la igualdad:

ontogeniaf520    (35)

  • Aplicando el teorema del coseno en el triángulo de vértices Tn, Sn y Dny teniendo en consideración que ontogeniaf521 obtenemos que:

ontogeniaf522   (36)

Y puesto que las coordenadas de los puntos que intervienen en esa igualdad son:

ontogeniaf523

se tiene que:

ontogeniaf524     (37)

Y teniendo en consideración (31) y (33)

ontogeniaf525    (38)

Por tanto, la igualdad (36) queda expresada como:

ontogeniaf526    (39)

A partir de (35) y (39) tenemos un sistema de dos ecuaciones que nos relaciona al ángulo γ (amplitud del arco del septo), con el β (retardo del punto de intersección dorsal del septo Dnrespecto al punto de intersección ventral Tn). Este sistema puede reescribirse como:

ontogeniaf527      (40)

 Es decir,

ontogeniaf533  (41)

 

ontogenia43

Escena interactiva 5. Determinación numérica de la amplitud del septo.
Pulse sobre la imagen para interactuar libremente con ella.

La resolución numérica de la ecuación (41) (puede observarse en la escena interactiva 5, donde la gráfica en azul se corresponde con la función en la variable γ, definida por la expresión del miembro de la izquierda en (41) con 0 ≤ γπ) nos permite determinar:

  • La amplitud del septo ontogeniaf528γ = 2,5090... radianes ≃ 143,76º.
  • El desplazamiento entre la intersección dorsal y la ventral ontogeniaf529β = 0,6831... radianes ≃ 39,14º.
  • El ángulo entre los radios vectores ontogeniaf530 y ontogeniaf531ontogeniaf532

Apoyándonos en que en una espiral cordobesa el ángulo que forma el radio vector con la recta tangente es de 80,32 º tenemos que (ver Fig. 43) el ángulo que forma la recta tangente a la pared dorsal en Dcon la recta tangente al septo en ese mismo punto es de 75,38º, es decir el septo no interseca a la pared dorsal perpendicularmente, si no formando con respecto a esa perpendicular un ángulo de 14,62º. Eso concuerda con lo indicado por Mutvei &  Doguzhaeva (1997), que ya reflejamos en la figura 20, y la depresión septal dorsal en el área media ―sección o corte que es el que estamos analizando en este estudio― lo que hace es corregir dicha desviación respecto a la perpendicular buscando aportar y lograr, quizás, una mayor consistencia (eso es lo que puede interpretarse de este hecho aportado por la matemática).

Este comportamiento teórico es el mismo tanto en el segundo como en el tercer verticilo, pues en ambos casos la pared dorsal y ventral comparten el mismo polo. En el tercer verticilo, esa depresión dorsal parece ser menos notable, al menos aparentemente, si bien sí pueden visualizarse o intuirse (interactuar por ejemplo con la digitalización del Nautilus del Museo Dundee ―figura 22―). Matemáticamente no hay diferencia.

ontogenia44

ontogenia45

 Fig. 43. Ángulo de incidencia entre septo y pared dorsal en el segundo y tercer verticilo.

Ecuaciones del modelo 

Así pues, en estos dos verticilos los arcos de los septos tienen por ecuación (23), donde para cada n ≥ 8  (en el primer verticilo hay ocho septos y el octavo da inicio al segundo) tenemos que:

  • d = 0,5.
  • ontogeniaf535 siendo ontogeniaf534
  • ρ ∈ [ α- γ, α], con γ = 2,5090...

Los puntos de tangencia son: T( ontogeniaf536) y los de intersección con la pared dorsal pueden escribirse:

  • como punto de la pared dorsal: Dn (ontogeniaf537), donde denotamos βn = αn - 2π - β con β = 0,6831.
  • como punto del arco de septo: ontogeniaf538ontogeniaf539.
Síntesis

La introducción de la tangencialidad entre la pared ventral y los septos nos ha permitido lograr la modelación matemática de la sección sagital del Nautilus en el segundo y tercer verticilo y acentuar el caracter cordobés de sus elementos. En la escena interactiva 6, podemos observar e interactuar con este modelo.

nautilus2y3verticilo

 Escena interactiva 6. Modelo tangencial de los septos y de la pared ventral en el segundo y tercer verticilo.
Pulse sobre la imagen para interactuar libremente con ella.

El camino seguido en el análisis anterior nos puede servir de guía para abordar el estudio de los septos en ese primer verticilo tan especial. Especial por ser la pared dorsal y la ventral espirales cordobesas con distinto polo y, como veremos, por ser ésta la causa esencial de esas cámaras diferentes y esos septos variables. Un estudio que considero es interesante y matemáticamente bonito. Pero siento dejarles con la miel en los labios ya que lo dejaré para un nuevo artículo... espero no tenerles en vilo mucho tiempo.


Bibliografía 

Galo J.R., Cabezudo A. y Fernández I.(2016) : Sobre la forma y crecimiento cordobés del Nautilus PompiliusEpsilon, 2016, Vol. 33 (3), nº 94.

Mutvei, H. and Doguzhaeva, L. (1997): Shell ultrastructure and ontogenetic growth in Nautilus pompilius L. (Mollusca: Cephalopoda). Palaeontographica Abteilung A Palaeozoologie–Stratigraphie, vol. 246, p. 33–52.

Ward, P. (1979). Cameral liquid in Nautilus and ammonites. Paleobiology, 5(1), pp. 40-49.

Ward, P., Greenwald, L., & Magnier, Y. (1981). The chamber formation cycle in Nautilus macromphalus. Paleobiology, 7(4), 481-493. doi:10.1017/S0094837300025537

 


[1] Al no tener una referencia temporal del crecimiento del Nautilus, sólo podemos señalar un mismo instante vital teórico mediante el uso de una amplitud angular común. De esta manera establecemos momentos, atemporales, en la que se han de dar coincidencias vitales. En este caso, para un valor fijado de θ, conocemos el punto de la pared ventral y el punto de la pared dorsal que están relacionados entre sí.

[2] En estos verticilos, en el modelo uniforme se detectó que ≃ 0,5, que es un valor próximo al valor medio del factor correspondiente al sifúnculo y al del de la pared dorsal ―Galo et al., 2016―.

[3] Para conocer el proceso de formación de las cámaras de los nautilos podemos acudir a lo estudiado y analizado por Ward, Greenwald y Magnier (1981) en su artículo “The chamber formation cycle in Nautilus macromphalus”. Estos autores basan su estudio en la observación radiográfica (ver figura 26) de diferentes ejemplares en distintos momentos y, así, pueden analizar las variaciones que acontecen y realizar mediciones que llevan a plantear un crecimiento periódico que comprende tres fases:

  • Formación de una cresta mural en la posición que ocupará el nuevo septo. Esta cresta es una delgada banda anular interna de carbonato cálcico.
  • Desplazamiento hacia delante del manto septal para ubicarse a la altura de la cresta mural y ajustarse a ella. Inicio del proceso de calcificación del nuevo septo. También el sifúnculo comienza a calcificar un anillo de conexión en el interior de la nueva cámara uniendo el septo anterior y el nuevo. Durante esta fase la nueva cámara está llena de líquido cameral (Ward, 1979) y no acontece ningún vaciado de la misma, pero ese vaciado sí continúa en las cámaras anteriores.
  • Vaciado del líquido de la nueva cámara, que se inicia cuando el nuevo tabique ha alcanzado de un tercio a dos tercios de su espesor final. Este vaciado se denomina acoplado pues el líquido está en contacto con el anillo de conexión sifuncular. En esta fase el tabique septal sigue construyéndose, engrosándose, finalizando este proceso cuando el volumen del líquido vaciado es aproximadamente el 50% y ya no está en contacto con el anillo sifuncular, momento en el que se pasa a un proceso de vaciado desacoplado y comienza la formación de una nueva cresta mural y, consecuentemente, un nuevo ciclo.

Durante el ciclo de formación de una cámara, el crecimiento de la concha exterior parece ser que es continuo, pero hay una correlación inversa entre el porcentaje de líquido que se ha vaciado en la última cámara construida y la amplitud angular de la cámara habitacional. A medida que la cámara septal está más vacía la cámara habitacional es mayor y viceversa. Esta relación logra mantener la flotabilidad ya que cuando la nueva cámara está más llena de líquido el peso de la concha en la zona habitacional es menor y a medida que decrementa el líquido aumenta la amplitud de la zona habitacional. El inicio de cada cámara representa un punto crítico para la flotabilidad global, pero esto se compensa con el vaciado desacoplado que sigue aconteciendo en las cámaras anteriores.

[4] También se apuntó la posibilidad de que ese valor correspondiera a la espiral intermedia entre la del sifúnculo y la pared dorsal, es decir, ontogeniaf515, pero en este caso d' ≠ e, es decir las dos espirales citadas son diferentes. De ahí que optemos por el valor e = 0.5.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión

 

Amplitud angular interseptal y área de las secciones de las cámaras del Nautilus

Título: Amplitud angular interseptal y área de las secciones de las cámaras del Nautilus
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea

En el artículo anterior (Ontogenia III) mostramos la modelización del labio dorsal y del sifúnculo en el primer verticilo del Nautilus y observamos las diferencias que acontecen con respecto a etapas vitales posteriores. En éste, procederemos a realizar un análisis de los tabiques y de las cámaras septales en la primera etapa de la ontogenia del Nautilus y buscaremos caracterizar las particularidades que, de manera evidente, se muestran en ese primer verticilo. Con una simple, pero atenta mirada, se observa que en esa primera vuelta hay un número menor de cámaras que las que se contabilizan en la segunda y tercera, se visualiza una amplitud angular de las mismas que aparece como no uniforme, se intuye un tamaño o capacidad volumétrica diversa con unas cámaras pequeñas y otras grandes con un crecimiento quizás no gnomónico e incluso en algunos casos decreciendo. Muchos detalles en los que aquí profundizamos y sobre los que desvelamos y aportamos explicaciones y posibles causas que lo ocasionan, siempre desde una perspectiva y visión matemática, pero con soporte y referencias biológicas. Le animamos a profundizar en este estudio y a continuar avanzando en la compresión de la esencia nautílica y en el descubrimiento de su belleza oculta.

Los septos en el primer verticilo

Para el análisis de los septos en el primer verticilo nuestra referencia inicial ha de situarse en el modelo uniforme (Galo et al., 2016) donde las cámaras septales se distribuyen siguiendo una amplitud angular de ontogeniaf21, lo que conduce en cada vuelta a un número de dieciséis tabiques y estos son arcos de espirales cordobesas de ecuación:

ontogeniaf22(11) 

cuyos polos ontogeniaf23 están ubicados, a su vez, en otra espiral cordobesa. Ésta última, en ese modelo, se mostraba como la espiral intermedia entre el sifúnculo y la pared dorsal:

ontogeniaf24       (12)

donde

ontogeniaf25   (13)

o bien, aproximadamente es la espiral formada por los puntos medios de los radios vectores de la espiral correspondiente a la pared ventral de la concha que, obviamente, se corresponde con el factor 0,5.

Lo antes descrito ha de ser la base primordial sobre la que tenemos que apoyarnos para tratar de canalizar ese análisis y para poder focalizar adecuadamente la búsqueda y para lograr recopilar cuáles son los datos más certeros que nos conduzcan a la compresión del comportamiento y también a su modelación. O al menos a esta última, pues aun teniendo el modelo no siempre es factible saber la causa o posicionarse tajantemente en ella.

Sobre el menor número de cámaras septales en el primer verticilo

Si observamos las cámaras septales del primer verticilo es evidente, basta hacer un recuento, que el número de éstas son ocho y ello se correspondería con una amplitud angular media de ontogeniaf26. No obstante, a primera vista o aparentemente, parece más que esa amplitud se manifiesta como variable y que no es obvio fijarla a priori. Esa cantidad de cámaras es inferior a las existentes en el segundo verticilo en el que son dieciséis con una amplitud constante de ontogeniaf27 y también a las del tercero donde hay un número variable, según el ejemplar y nivel de madurez, pero manteniendo también esa amplitud de ontogeniaf21.

¿Por qué el número de cámaras es menor en el primer verticilo? Ilustrémonos en el devenir de esta etapa inicial del Nautilus acudiendo a algunas referencias descriptivas biológicas y acompañémoslas de una primeras reflexiones matemáticas personales:

  • Landman et al. (1989, pp. 12-13) indican que, en la parte correspondiente al labio dorsal, el tercer septo se apoya parcialmente en el segundo e igualmente el segundo en el primero. Por tanto, se induce que el labio dorsal no tiene la suficiente longitud para poder aportar un espacio disjunto para cada septo. Y si eso acontece con la amplitud media interseptal de ontogeniaf28, antes indicada, podemos imaginar el colapso o imposibilidad constructiva a la que se vería abocado el Nautilus si la amplitud fuera aún menor, en concreto la mitad: ontogeniaf21. Esto lo podemos evidenciar sin más que calcular la longitud del labio dorsal aplicando que la longitud de un arco de la espiral ontogeniaf29 para ontogeniaf30 viene dada por:

    ontogeniaf31                  (14)   (Galo et al, 2016)

    y, por tanto, aplicándolo a la ecuación del labio dorsal (3)-(4) y considerando la escala real de las imágenes de la concha del Nautilus que estamos usando en las escenas interactivas, se obtiene que ontogeniaf32 mm. Esto conduce a que en el labio dorsal, para las ocho cámaras que se visualizan en el primer verticilo, hay un espacio medio[1] para cada cámara de unos 0,57 mm lo cual de por sí ya es bastante ajustado, pues en las figuras 13 y 14 procedentes de Ladman et al. y usando la regla de la escena interactiva 2 puede observarse que el apoyo dorsal de cada uno de los tres primeros septos ocupa ese espacio e incluso algo más y de ahí que tengan que superponerse, y que en el resto de las cámaras septales de ese verticilo la distancia entre septos es sólo algo superior. En el supuesto de considerar dieciséis cámaras estaríamos hablando de un espacio medio de 0,285 mm… al Nautilus no le salen las cuentas, ni le trae cuenta[2] elaborar tanto septo, más si consideramos adicionalmente lo que detallamos a continuación.

  • Greenwald y Ward (2010) indican que un Nautilus, que pesa en el aire un kg, en el interior del agua en la que habita pesa solo unos pocos gramos, es decir, ponen de manifiesto una de sus características vitales esenciales: su flotabilidad casi neutra. Adicionalmente, detallan como esta flotabilidad se alcanza mediante el vaciado del líquido de las cámaras y cómo éste ha de ir compensándose adecuadamente con el aumento de peso que aporta cada nueva pared septal y también con el correspondiente a la ampliación de la concha ventral que da forma a la cámara habitacional y que es la que pasa a ocupar el animal. El propio animal suma su incremento de peso al crecer (ver figura 26). Y, de nuevo, Landman et al. (1989, p. 15) indican que en la fase de construcción de los primeros septos la proporción entre el volumen de las cámaras septales y el del fragmacono es pequeña y por tanto en esa etapa inicial el animal no alcanza la flotabilidad.

    Consecuentemente, en una somera visión, parece fácil concluir que principalmente en la etapa inicial y también en general, ha de ser un empeño básico el lograr economizar en la cantidad de material calcáreo a utilizar ―dato que de nuevo incide y aporta cierto porqué relativo al menor número de septos― y que lo que se use ha de ser compensado por el empuje ocasionado por el volumen de líquido septal que se desaloje, es decir, ha de estar equilibrado con el volumen que alcancen las cavidades septales. Así pues, dado que el Nautilus inicialmente no flota y después sí, se deduce que debe haber una variabilidad volumétrica en las primeras cámaras y que este posible hecho puede ir también relacionado con la amplitud angular interseptos que parece ser variable, según indicamos con antelación. Es necesario y procede analizar esta capacidad de las cámaras, pero en este estudio bidimensional acudiremos sólo al cálculo de la superficie ocupada por las secciones de las cámaras y analizaremos su variación[3]. No obstante, avancemos sin precipitación, que progresivamente van apareciendo diversas facetas y es necesario asentar estas ideas con un material de apoyo adecuado y procede darle el necesario sustento matemático.

 ontogenia flotabilidad
Fig. 26. Formación de una cámara y vaciado del líquido de las cámaras que acontece en la cámara anterior. Fuente: Buoyancy in Nautilus, Greenwald L., Ward P.D. (2010).
 

Sobre la amplitud angular de las cámaras septales en el primer verticilo y en los dos restantes

Ya hemos indicado, e incluso reiterado, que las dieciséis cámaras del segundo verticilo conducen a una amplitud angular entre cámaras de ontogeniaf21, la cual se mantiene para los septos de tercer verticilo, y que las ocho del primero llevan a una amplitud de ontogeniaf28. Si consideramos el retardo de la espiral dorsal respecto a la ventral en el segundo y tercer verticilo que es de 2π, al efectuar el cociente ontogeniaf27 obtenemos el valor numérico antes indicado, pero si aplicamos igual proporción en el primer verticilo ¿qué ocurre? El retardo entre el labio dorsal y la pared ventral en este caso es de 4π y resulta que ontogeniaf26, es decir, un paso entre septos de ontogeniaf28, paso que casualmente conduciría a los ocho septos observados en ese verticilo[4].

Sí, parece como si estuviéramos enfrascados en el reiterado y recurrente dilema de ¿qué fue antes: el huevo o la gallina?, pero más bien sería una estrategia de observación múltiple, desde puntos de vista opuestos o diferentes, buscando la generación de algún destello que, al menos, difumine un poquito las sombras platónicas en las que toda investigación siempre anda envuelta. Para tratar de provocar la necesaria chispa detonadora vamos a usar la escena interactiva 4

ontogenia escena4

 Escena interactiva 4. Amplitud angular interseptal en el primer verticilo y área de las secciones de las cámaras del Nautilus.
Pulse sobre la imagen para interactuar libremente con ella. Si posiciona el ratón sobre los botones tendrá una breve información o consulte las instrucciones.

En el espacio izquierdo de la escena interactiva 4 contamos con herramientas auxiliares que nos permiten analizar la distribución que pueda acaecer en la amplitud septal. Con ellas hemos obtenido las imágenes mostradas en las figuras 27 a 32, que sintetizan el análisis que detallamos a continuación:

  • Con el control tipo botón “centro y radios de paso ontogeniaf28” (ver figura 27), disponemos de un conjunto de radios distribuidos con esa amplitud angular constante y con el ratón es posible desplazarlos a voluntad sin más que mover el centro o punto de intersección de ellos y, también, se pueden girar con el pulsador situado a la derecha de ese botón. Con esta herramienta podemos tratar de localizar, si existe, el punto de vista desde el que los apoyos de los septos sobre el labio dorsal y ventral se observen con la esperada o deseada distribución uniforme de pasoontogeniaf28. Esta búsqueda viene impuesta por el hecho que desde el polo de la espiral ventral no se cumple esa relación (ver figura 28) ni para los apoyos dorsales, ni para los ventrales; y si consideramos esos radios con centro el polo del labio dorsal los apoyos dorsales (ver figura 29) puede considerarse quedan próximos a esa distribución, pero no ocurre así con los ventrales. Le invitamos a realizar sus pruebas e indagaciones usando dicha escena interactiva 4.
  • En las pruebas que he realizado concluyo que hay dos posiciones que modelan adecuadamente esos apoyos septales con distribución uniforme de paso ontogeniaf28. Ambas las tenemos accesibles respectivamente con el botón etiquetado como “centro de los apoyos dorsales de los septos y pasos entre ellos” y con el botón análogo para “los apoyos ventrales” (ver figura 30). Ambos modelos están reflejados en las figuras 31  y 32. En ellas puede verse que:
    • El polo del labio dorsal (punto rojo  en la figura 31) y el centro considerado para los radios (punto rojo con borde negro en esa figura) no coinciden, si bien ambos están ubicados en el eje polar (recta dibujada en color verde que une el polo dorsal y el ventral ) y el radio correspondiente al primer septo está alineado con él (recordemos que el primer septo intersecaba al labio dorsal en la constricción y el eje polar también). Las coordenadas determinadas para ese centro, que denominaremos a partir de ahora como centro dorsal, son: ontogeniaf33.
    • El polo de la pared ventral (punto azul en la figura 32) y el centro considerado para los radios (punto azul con borde negro en esa figura) claramente no coinciden, pero también ambos están ubicados en el eje polar. El radio correspondiente al apoyo ventral del primer septo está desviado un ángulo aproximado de ontogeniaf21 respecto a dicho eje polar. Las coordenadas de ese centro, que denominaremos centro ventral, son: ontogeniaf34.
 ontogenia centros radios

Fig. 27. Botones para situar y girar un haz de radios secantes de pasoontogeniaf28 .

 ontogenia apoyosventrales  ontogenia apoyosdorsales

Fig. 28. Radios de paso ontogeniaf28. Aproximación de los apoyos ventrales de los septos.

Fig. 29. Radios de paso ontogeniaf28. Aproximación de los apoyos dorsales de los septos.

 ontogenia centros apoyos

Fig. 30. Botones para mostrar los haces de radios de paso ontogeniaf28que aproximan los apoyos dorsales y ventrales de los septos.

 ontogenia centrosdorsales  ontogenia centroventrales

Fig. 31. Radios de paso ontogeniaf28. Aproximación de los apoyos dorsales de los septos con paso ontogeniaf28y ubicación de su centro.

Fig. 32. Radios de paso ontogeniaf28. Aproximación de los apoyos ventrales de los septos con paso ontogeniaf28y ubicación de su centro.

 

Adicionalmente, si mostramos conjuntamente el polo dorsal ontogeniaf37 y el ventral ontogeniaf38 junto a los respectivos centros dorsal y ventral (ver la figura 33), se observa que la mediatriz del segmento ontogeniaf35 coincide con la del segmento ontogeniaf36, es decir, que hay un punto C que es centro de simetría de esas dos parejas de puntos.

 ontogenia polos centros
Fig. 33. Alineación de los polos ventral y dorsal con los centros dorsal y ventral. Ubicación simétrica.
 

Ahora sí, podemos visualizar por qué las cámaras septales aparentan a primera vista una amplitud no uniforme y también por qué las superficies de las secciones de las cámaras se muestran tan diferentes. De nuevo, ya lo detectamos con el sifúnculo, la no coincidencia entre el polo dorsal y ventral que ahora se refleja (reflejo en sentido estricto dada la simetría detectada) en la existencia de dos centros no coincidentes da explicación matemática a esa diferente distribución de cámaras septales en este primer verticilo.

Sobre la superficie de las secciones de las cámaras septales en el primer verticilo

Para analizar el crecimiento de las cámaras y así tratar de detectar los aspectos alométricos[5] que aquí acontecen, hemos construido una herramienta auxiliar que nos permite calcular el área de cada una de las secciones de esas cámaras (ver el espacio de la derecha en la escena interactiva 4 y ver las figuras 34 y 35). Mediante la concanetación de triángulos se puede ajustar la superficie deseada y se facilita de manera automática su área a la escala real del Nautilus.

ontogenia medidor superficies ontogenia midiendo superficies
Fig. 34. Botón de acceso al medidor de superficies. Fig. 35. Midiendo el área de una sección de una cámara.

 

En la tabla I se refleja la medición realizada con dicha escena interactiva. La columna "Cámara" se corresponde con la numeración de las mismas, "Nautilus 1" recoge las áreas de las secciones del Nautilus Dundee y "Nautilus 2" las del otro ejemplar. El primero cuenta con treinta y tres cámaras y el segundo treinta y dos (en los gráficos comparativos no consideraremos la cámara 33). Las columnas "√pc1" y "√pc2" reflejan respectivamente la raíz cuadrada de las proporciones existentes entre las cámaras pc = An+1/An, 1 ≤ n ≤ 31 para cada uno de los ejemplares.

Dado que el crecimiento angular teórico de la pared ventral en el segundo y tercer verticilo es ontogeniaf21, y que en base a ello (para comprobarlo puede usarse (14)) se verifican la proporciones:

ontogeniaf40            (15)

ontogeniaf41       (16)    

donde ln  es la longitud de la pared ventral hasta la cámara n y, por tanto, ln+1 - ln  es el incremento ventral que ocurre en la cámara n+1, es de esperar que la proporción entre las áreas de las cámaras sea:

ontogeniaf39                   (17)

Y en el primer verticilo también sería de esperar la obtención de relaciones análogas en base al crecimiento angular de ontogeniaf28, pero quizás con matices diferenciados pues centros angulares y polos en este verticilo son distintos y ya estamos acostumbrándonos a la diferenciada ontogenia de esta etapa.

En las figuras 36 y 37 se han representado las áreas de las secciones de las cámaras mediante una poligonal y a su vez se ha determinado la línea de tendencia mediante un ajuste exponencial. En la primera de esas dos gráficas se han considerado todas las cámaras y en la segunda las correspondientes al segundo y tercer verticilo, como hemos señalado el objetivo es detectar posibles variaciones entre la primera etapa de crecimiento y las posteriores. En el primer caso la proporción entre las áreas de cada dos cámaras consecutivas es un poquito superior al valor teórico esperado indicado en (17), pues el exponente en ambos casos es algo superior a dos. Esto está provocado por el crecimiento diferenciado que acontece en el primer verticilo, ya que si consideramos la proporción citada sólo en las cámaras del segundo y tercero (figura 37) entonces sí se está en el entorno cuadrático que caracteriza a ese valor teórico. 

En la figura 38 se refleja ese comportamiento diferenciado del primer verticilo y en especial la disminución que acontece en la octava cámara. Si realizamos un ajuste exponencial en este caso el valor esperado sería:

ontogeniaf42        (18)

al ser el paso angular ontogeniaf28, pero podemos observar en el ajuste que el valor el superior, e incluso si descartamos la octava cámara (figura 39) el exponente es aún mayor, superior a cuatro.


Tabla I. Área de las cámaras. Proporción. 

Cámara Nautilus 1 Nautilus 2 √pc1 √pc2
1 1,72 0,75
2 5,82 3,10 1,839 2,033
3 12,92 6,65 1,490 1,465
4 22,00 13,02 1,305 1,399
5 28,59 18,85 1,140 1,203
6 30,24 31,60 1,028 1,295
7 31,24 32,22 0,867 1,010
8 23,35 24,96 0,945 0,880
9 24,38 24,46 1,096 0,990
10 30,68 31,88 1,122 1,142
11 30,13 35,25 0,991 1,052
12 37,41 39,19 1,114 1,054
13 43,59 51,17 1,079 1,143
14 46,52 53,71 1,033 1,025
15 60,19 56,40 1,137 1,025
16 60,26 63,36 1,001 1,060
17 70,21 67,97 1,079 1,036
18 86,81 81,07 1,112 1,092
19 91,61 94,61 1,027 1,080
20 105,61 110,02 1,074 1,078
21 118,35 112,36 1,059 1,011
22 143,88 138,63 1,103 1,111
23 166,65 145,73 1,076 1,025
24 188,53 174,74 1,064 1,095
25 215,37 211,64 1,069 1,101
26 251,96 228,15 1,082 1,038
27 286,89 276,36 1,067 1,101
28 334,66 317,02 1,080 1,071
29 370,82 368,22 1,053 1,078
30 468,01 432,54 1,123 1,084
31 466,53 508,39 0,998 1,084
32 481,31 578,76 1,016 1,067
33 300,14 0,790  

 camara01

Fig. 36. Áreas de las cámaras del Nautilus en los tres verticilos. Ajuste exponencial. 

 camara02

Fig. 37. Áreas de las cámaras del Nautilus en el segundo y tercer verticilo.Ajuste exponencial.

 

camara03

Fig. 38. Áreas de las cámaras en el primer verticilo.Ajuste exponencial.

 camara04

Fig. 39. Áreas de las seis primeras cámaras del primer verticilo. Ajuste exponencial.

 

Pero en este primer verticilo el ajuste más certero sería el logarítmico (ver figura 39) ya que inicialmente en este verticilo el Nautilus ha de conseguir la flotabilidad mediante un crecimiento rápido, es decir, con cámaras amplias y conseguida ésta cierta estabilización, retomando el crecimiento a partir de la cámara novena, pero en este caso de tipo exponencial.

camara05 

Fig. 39. Áreas de las seis primeras cámaras del primer verticilo 

En el ajuste logarítmico del primer verticilo la relación obtenida entre las cámaras es:

ontogeniaf43              (19)

Para poder tratar de comprender y explicar lo que acontece será necesario adentrarnos en otra tarea que está intrísecamente relacionada con ésta ya que cada cámara queda determinadas por dos septos y un arco de la pared ventral y otro de la dorsal. Así pues, como ya adelantamos, necesitamos profundizar en los septos, en particular en su amplitud y en especial en el primer verticilo, y también cómo se intersecan estos con la paredes de la concha. Sobre la forma de los mismos sabemos que son arcos de espirales cordobesas. Así pues, ¡adentrémonos!... pero será en un artículo adicional, pues éste ya alcanzó una extensión suficiente.


Bibliografía 

Galo J.R., Cabezudo A. y Fernández I.(2016 a) : Sobre la forma y crecimiento cordobés del Nautilus PompiliusEpsilon, 2016, Vol. 33 (3), nº 94.

González-Restrepo, F. (2019): Cortes del Nautilus a partir de la digitalización 3D del museo Dundee. Red Descartes Colombia

Greenwald L., Ward P.D. (2010) Buoyancy in Nautilus. In: Saunders W.B., Landman N.H. (eds) Nautilus. Topics in Geobiology, vol 6. Springer, Dordrecht.
https://doi.org/10.1007/978-90-481-3299-7_34

Landman, N. H., Arnold, J. M. and Mutvei, H. 1989: Description of the embryonic shell of Nautilus belauensis. American Museum Novitates, no. 2960, p. 1–16.


[1] Al ser un crecimiento gnomónico, la longitud del apoyo dorsal necesaria para cada cámara va incrementándose, pero aquí lo que buscamos es poner de manifiesto el escaso espacio existente y, consecuentemente, este razonamiento basado en el cálculo del espacio medio disponible es suficiente para alcanzar este objetivo.

[2] Desde el punto de vista causal podríamos apuntar que el hecho de que el espacio disponible sea pequeño es precisamente lo que conduce a ese menor número de cámaras septales. El Nautilus, para construir un nuevo septo ha de desplazarse hacia adelante en su cámara habitacional, necesita un espacio interseptal mínimo, y ese espacio es el que adquiere para cumplir su objetivo natural de crecer y, si es posible, hacerlo gnomónicamente para mantener sus proporciones, su forma. Su preocupación o necesidad es la de avanzar para crecer, ocupando un nuevo espacio, y deja la contabilidad para otros o más precisamente para nosotros.

[3] González-Restrepo (2019) nos aportará próximamente el volumen de cada cámara a partir de los datos de la digitalización aportada para el Nautilus del museo de D’Arcy Thompson.

[4] Al igual que acontecía con el eje del fragmacono, el retardo diferente entre pared dorsal y ventral, 4π vs. 2π, vuelve a aparecer ahora ligado a las cámaras septales.

[5] La alometría son los cambios de dimensión relativa de unas partes corporales en relación a los cambios que acontecen en el tamaño total. Y en particular, la alometría en el crecimiento detecta qué partes de un cuerpo o ente tienen un comportamiento diferenciado.


 Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional 

Publicado en Difusión

 

Concha y sifúnculo del Nautilus en el primer verticilo

Título: Concha y sifúnculo del Nautilus en el primer verticilo
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea

 

Labio dorsal y eje del fragmacono del Nautilus en el primer verticilo

Título: Labio dorsal y eje del fragmacono del Nautilus en el primer verticilo
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea

 

El modelo cordobés uniforme del Nautilus

Título: El modelo cordobés uniforme del Nautilus (revisión)
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

Publicado en Miscelánea
Página 2 de 5

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales de Matemáticas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information