Título: Deltoides con proporciones áureas
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Secundaria, Bachillerato y Universidad (12 años o más)
Idioma: Castellano
Autor: Luis Barrios Calmaestra
ISBN: 978-84-18834-99-8
Haz clic aquí para ver una versión en pdf
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Un paquete SCORM (Sharable Content Object Reference Model) consiste en una lista de requisitos técnicos, que contiene una descripción detallada de la estructura de un objeto de aprendizaje y un conjunto de archivos y datos que hacen posible que sea interpretado por diferentes plataformas e-learning, como por ejemplo Moodle.
Si se dispone de un curso en una plataforma Moodle, se pueden crear paquetes SCORM con actividades de evaluación, de forma que las calificaciones obtenidas por el alumnado queden registradas en Moodle.
En los diferentes proyectos de la RED se dispone de muchas actividades con ejercicios de autoevaluación. En este artículo se propone la creación de un paquete SCORM a partir de la autoevaluación de una unidad del proyecto ed@d.
Para crear un paquete SCORM deberemos cumplir con una serie de requisitos previos:
En primer lugar será preciso crear una nueva carpeta, con el material necesario para el funcionamiento de la actividad. Para que la escena se comunique con Moodle, se deberán añadir también dos ficheros JavaScript y un archivo html llamado comunica.html. Este archivo contiene el código para enviar a Moodle la calificación (nota) obtenida en la actividad.
También se deberá modificar la escena del objeto interactivo con el editor DescartesJS, añadiendo un nuevo espacio html (cal), que carga la página comunica.html para la interacción con Moodle y un botón enviar, que al pulsar notificará la calificación de la actividad. También será preciso definir la variable nota, la suma de todas las respuestas correctas que quedará registrada en Moodle.
Finalmente, una vez modificada la escena, nos dispondremos a crear el contenedor SCORM usando un editor que permita crear estos paquetes. Hay varias herramientas para crear contenidos SCORM, en este caso se utiliza el programa RELOAD (Reusable eLearning Object Authoring & Delivery). Con RELOAD crearemos el paquete con los contenidos, los datos, la organización y la estructura de la actividad. El paquete con los archivos y carpetas necesarios se guardará en un fichero ZIP. Este es el fichero que se subirá a Moodle al crear una actividad del tipo SCORM.
Enlaces a los materiales:
Paquete SCORM (autoevaluación de la unidad de proporcionalidad)
En el siguiente vídeo, se muestra con detalle la creación y aplicación en Moodle de un paquete SCORM a partir de una autoevaluación del proyecto ed@d:
>
En este artículo presentamos dos unidades del proyecto Misceláneas con ejercicios de porcentajes e intereses.
Misceláneas es un subproyecto de la Red Educativa Digital Descartes que contiene unidades independientes que tratan diferentes aspectos del currículo de matemáticas y que se pueden utilizar como complemento al estudio de distintos conceptos matemáticos. En este caso hemos seleccionado las unidades: Descuentos y recargos simples y porcentajes encadenados y BANCOS. Interés simple y compuesto.
Estas dos escenas interactivas son un recurso útil para el profesorado ya que en ellas se proponen múltiples ejercicios con autocorrección para practicar porcentajes y, por sus características, adecuados a todos los niveles de secundaria, ya sea de ampliación en los primeros cursos o bien de consolidación y refuerzo en cursos superiores.
En el siguiente vídeo se muestra con detalle la tipología de los ejercicios propuestos en estas escenas. También se propone un ejemplo de aplicación en un curso Moodle sobre el tema de proporcionalidad para segundo de la ESO. En primer lugar se ha insertado la unidad temática proporcionalidad del proyecto ed@d y como complemento se han añadido las dos unidades de porcentajes e intereses. De la misma forma, para completar el tema, se podrían incorporar en el aula virtual otras actividades y tareas sobre proporcionalidad.
Título: Primeros problemas de magnitudes proporcionales
Sección: Unidades didácticas
Bloque: Álgebra
Unidad: Números y operaciones
Nivel/Edad: 1º ESO (12 o más años)
Idioma: Castellano
Autoría: Rita Jiménez Igea
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Problemas de proporcionalidad
Sección: @prende.mx
Bloque: Álgebra
Unidad: Números y operaciones
Nivel/Edad: 5º y 6º de Primaria (10 a 11 años)
Idioma: Castellano
Autoría: Varios autores
Promotor: Secretaría de Educación Pública del gobierno de México
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de @prende.mx en
https://proyectodescartes.org/AprendeMX/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.
Como muestra enlazamos la unidad sobre Crecimiento Exponencial, del subproyecto TELESECUNDARIA,
la GEOevaluación de los estados y ciudades de México.
y el ejemplo de: Asocia parejas de imágenes y textos (2).
Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D en particular los materiales de 2º y 4º LOMCE y las adaptaciones de los trabajos de Javier de la Escosura Caballero: "Geometría dinámica del trángulo" que enlazamos a continuación
y el de Cuadrilateralia, donde se fomenta el estudio y conocimiento de las características matemáticas de los objetos mediante la manipulación virtual de los mismos y que enlazamos con la imagen siguiente.
Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el primero de los métodos para trisecar un ángulo con la Concoide de Nicomedes. El ángulo a trisecar es el formado por el eje polar y la recta que une el polo con el punto que se desplaza por la directriz.
El análisis de la escena y su modificación, fundamentalmente en la situación del tercio del ángulo mencionado anteriormente, nos lleva a descubrir interesantes características de la Concoide. También son interesantes las modificaciones funcionales que mejoren las prestaciones de la utilidad.
Mencionar, por último, que la escena es copia de la que en su día publicó el profesor Pedro González Enríquez en su trabajo sobre las trisectrices.
Entradas anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por uno y dos puntos y algunas de las utilidades de los l.g. generados por un punto, en la actual comenzamos a mostrar algunos de los usos de la Concoide.
En esta ocasión, en la sección de vídeo, hemos elegido, debido a su calidad e interés, el mismo que en la entrada anterior, que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografías y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Lituus" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Lituus incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y la trisección del ángulo, hemos incluido los trabajos realizados con el programa GeoGebra donde se muestran dos metodos para trisecar un ángulo con la Concoide de Nicomedes.
Método 1.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades al subproyecto TELESECUNDARIA.
Como muestra, enlazamos la unidad sobre superficies de revolución
También es continuo el flujo de aportación de unidades al apartado GEOevaluación del subproyecto GEOgráfica
En esta ocasión enlazamos la Evaluación de los Estados Unidos de América
Dentro de nuestro ámbito local destacan, entre otras, las Misceláneas sobre las espirales, todas ellas de indudable valor en cuanto establecen un hito en el estudio de estos lugares geométricos aunque, en particular, es de especial interés la creada por Ángel Cabezudo Bueno ya que, además de ser la primera de la serie actual, entronca directamente con la fuente origen de dicha serie, el trabajo de José R. Galo Sanchez sobre las proporciones, la belleza en las Matemáticas y la espiral Cordobesa y es consecuencia de la acertada propuesta de espiral gnomónica Cordobesa, ambas: propuesta y miscelánea se muestran y/o enlazan a continuación.
El artículo anterior mostraba, paso a paso y exhaustivamente escenas interactivas con la creación de un lugar geométrico (l.g.) por un punto común a dos segmentos y por un punto que se mueve linealmente en un segmento mientras este gira alrededor de uno de sus extremos, el actual vuelve a construir la espiral de Arquímedes y también paso a paso e interactivamente muestra como trisecar un ángulo cualquiera y como hallar la cuadratura de cualquier círculo.
A continuación se exponen las escenas interactivas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la relación de la espiral con la orografía y la interpretación de las señales cosmológicas por las diferentes culturas con objeto de apreciar distintas formas de enfocar el tema que nos ocupa.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral Hiperbólica" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral Hiperbólica incluida.
También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades, hemos incluido los siguientes trabajos realizados con el programa GeoGebra: en el primero se muestra el uso de la espiral de Arquímedes para la trisección de un ángulo y en el segundo para la cuadratura del círculo.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destacan las aportadas por la Red Educativa Digital Descartes Colombia (colDescartes) y la Red Educativa Digital Descartes España que, coordinadas por el profesor Juan Guillermo Rivera Berrío, han añadido al subproyecto GEOgráfica una importante cantidad de contenidos, lo que ha hecho necesario dividir el subproyecto inicial en varios subproyectos: GEOcapital, GEOdiver, GEOcolor y GEOevaluación (en estado muy avanzado), estando en fase de desarrollo los de: GEOmontañas y GEOrios, los tres primeros pueden verse y descargarse siguiendo el enlace gráfico siguiente.
El carácter evaluativo - formativo de estas unidades es extraordinario según se manifiesta en la escena anterior y en las que enlazamos a continuación.
También cabe señalar el desarrollo de todo un nuevo subproyecto "PLANTILLAS CON DESCARTES-JS que proporciona herramientas para la creación de contenidos lúdico-didácticos."
Dentro de nuestro ámbito local destacan, entre otras muchas, las siguientes aportaciones:
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la manera de dibujar la espiral áurea con regla y compás con objeto de apreciar diferentes formas de enfocar el tema que nos ocupa.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Fibonacci" tal y como anunciamos en el artículo del mes pasado.
En esta ocasión hemos procedido de la siguiente manera:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Fibonacci incluida.
También, relacionando, mediante el programa GeoGebra, la espiral con el Fenaquistiscopio, quisiera enlazar el siguiente trabajo de Nicolas Erdrich.
En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.
Ildefonso Fernández Trujillo
Este mes vamos a ver un vídeo de 4ºESO Opción A, correspondiente a proporcionalidad:
En este vídeop hemos tratado los siguientes apartados:
1.Proporcionalidad directa e inversa
Proporcionalidad directa
Proporcionalidad inversa
Repartos proporcionales
Proporcionalidad compuesta
2.Porcentajes
Porcentajes
Aumentos y disminuciones
Porcentajes sucesivos
3.Interés simple y compuesto
Interés simple
Interés compuesto
Tasa anual equivalente (T.A.E.)
Capitalización
Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destacan las aportadas por la Red Educativa Digital Descartes Colombia (colDescartes) y la Red Educativa Digital Descartes España que, coordinadas por el profesor Juan Guillermo Rivera Berrío, han añadido al subproyecto GEOgráfica una importante cantidad de contenidos, lo que ha hecho necesario dividir el subproyecto inicial en varios subproyectos: GEOcapital, GEOdiver y GEOcolor, estando en fase de desarrollo los de: GEOevaluación y GEOrios, los tres primeros se pueden ver y descargar siguiendo el enlace gráfico siguiente.
El potencial formativo de estas unidades queda de manifiesto en la escena anterior y en la que enlazamos a continuación.
En la creación efectiva de las unidades han intervenido:
Dentro de nuestro ámbito local destacan, entre otras muchas, las siguientes aportaciones:
En esta ocasión, en la sección de vídeo, hemos elegido uno donde se muestra la presencia de la espiral en las técnicas de sanación relacionadas con el equilibrado de los hemisferios con objeto de apreciar diferentes formas de enfocar el tema que nos ocupa.
Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Durero" tal y como anunciamos en el artículo del mes pasado.
En esta ocasión hemos procedido igual que en el caso de la espiral Cordobesa:
La escena del proyecto puede verse a continuación:
Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Durero incluida.
En próximas entradas continuaremos con el paso a paso del proyecto incluyendo la espiral de Fibonacci y otras más entre sus funcionalidades, reseñando las novedades y analizando el subproyecto Misceláneas. Animamos a los lectores a colaborar en el proyecto con contenidos o aportando ideas y sugerencias. Ildefonso Fernández Trujillo