Valora este artículo
(1 Voto)

Se presenta la miscelánea: Resto de Lagrange

Esta escena analiza el resto de la aproximación de una función derivable n veces en un punto a por su polinomio de Taylor de grado n a partir de la expresión del resto debida a Lagrange.

Esta expresión es una generalización del teorema del valor medio del cálculo diferencial y permite, en algunos casos, acotar el error de la aproximación de una función por su polinomio de Taylor.

Para la utilización de esta miscelánenea se debe introducir la expresión de la función, su derivada de orden n y los puntos a y x que se corresponden, respectivamente, con el punto en el que se hace el desarrollo y el punto en el que se quiere estudiar la aproximación. A partir de estos datos se puede calcular el polinomio de Taylor de cualquier grado centrado en el punto a siempre que la función sea suficientemente derivable en un dicho punto.

El vídeo siguiente explica el funcionamiento de esta escena.

Acceso a la miscelánea: Resto de Lagrange

Valora este artículo
(2 votos)

Se presenta la miscelánea: Polinomios de Taylor

Con esta escena se pueden obtener los polinomios de Taylor hasta el grado 4 de cualquier función que sea lo suficientemente derivable en un punto a.

Se representa además, en una misma gráfica, la función y los distintos polinomios de Taylor calculando sus valores en puntos x que son próximos al punto en el que se hace el desarrollo, punto a. El objetivo es poder observar la tesis del teorema de Taylor viendo que el valor de la función en un punto x se puede aproximar por el valor que toman los distintos polinomios de Taylor en dicho punto. Puede también comprobarse que esta aproximación es mejor cuanto mayor sea el grado del polinomio y cuanto más próximo esté x del punto a.

El vídeo siguiente explica el funcionamiento de esta escena.

 

Enlace a la miscelánea: Polinomios de Taylor

Valora este artículo
(2 votos)

Se presenta la miscelánea: Transformaciones complejas elementales.

La escena muestra cómo se transforman ciertas curvas planas mediante funciones complejas elementales como son las funciones: sen(z), cos(z), z2, 1/z, ez .

Toda función compleja uniforme aplica un punto del plano en otro punto del plano complejo. Por ello, para representar una función compleja se utilizan dos planos, uno para el dominio y otro para la imagen.  En la escena se representan estos dos planos y se visualiza la transformación de rectas y circunferencias por las funciones anteriormente indicadas. También es posible utilizar otra función compleja siempre que se introduzca su parte real y su parte imaginaria.

El vídeo siguiente explica el funcionamiento de esta escena.

 
Enlace a la miscelánea: Transformaciones complejas elementales.

 

Valora este artículo
(3 votos)

Se presenta la miscelánea: Funciones trigonométricas e hiperbólicas.

Con esta escena se pretende conseguir un doble objetivo. Por un lado, dar sentido geométrico a las funciones objeto de estudio y, por otro, mostrar la relación entre ambos tipos de funciones. Se puede decir que las funciones trigonométricas son a la circunferencia x2+y2=1, lo mismo que las funciones hiperbólicas a la hipérbola x2-y2=1.

En el siguiente vídeo se describe el funcionamiento de esta sencilla escena.

 Enlace a la miscelánea: Funciones trigonométricas e hiperbólicas

Página 7 de 11

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information