Se presenta la miscelánea: Resto de Lagrange
Esta escena analiza el resto de la aproximación de una función derivable n veces en un punto a por su polinomio de Taylor de grado n a partir de la expresión del resto debida a Lagrange.
Esta expresión es una generalización del teorema del valor medio del cálculo diferencial y permite, en algunos casos, acotar el error de la aproximación de una función por su polinomio de Taylor.
Para la utilización de esta miscelánenea se debe introducir la expresión de la función, su derivada de orden n y los puntos a y x que se corresponden, respectivamente, con el punto en el que se hace el desarrollo y el punto en el que se quiere estudiar la aproximación. A partir de estos datos se puede calcular el polinomio de Taylor de cualquier grado centrado en el punto a siempre que la función sea suficientemente derivable en un dicho punto.
El vídeo siguiente explica el funcionamiento de esta escena.
Acceso a la miscelánea: Resto de Lagrange