Aviso en el supermercado es una unidad didáctica interactiva que pertenece al apartado de Comprensión lectora del grupo PISA 2017. Las unidades de este grupo forman parte del Proyecto Competencias de la RED y han sido elaboradas a partir de unidades liberadas PISA.
Para facilitar su consulta, están agrupadas cinco grandes bloques: ciencias, comprensión lectora, finanzas, matemáticas y resolución de problemas.
Este mes vamos a ver el resumen de fracciones de 1ºESO:
Hemos tratado los siguientes puntos en nuestro vídeo:
1.Concepto de fracción.
Las fracciones en nuestra vida.
Elementos de una fracción.
Cómo se lee una fracción.
El valor de una fracción.
Pasar una fracción a un decimal.
2.Fracciones equivalentes.
Fracciones equivalentes.
Productos cruzados.
Simplificar una fracción.
3.Operaciones con fracciones.
Paso a común denominador.
Suma de fracciones.
Suma y resta de fracciones.
Multiplicación de fracciones.
Fracción inversa de una fracción.
División de fracciones.
Operaciones combinadas
4.Aplicaciones
Problemas con fracciones
La cantidad de patrones de teselado, por lo tanto la cantidad de teselados, es infinita e inagotable. También lo es la cantidad de no teselados. Los alarifes que hicieron posible la habitación de retiro de la reina y sus alrededores, en la alhambra de Granada, hicieron realmente, poesía geométrica viva, dinámica, sensorial, placentera, evocativa…
Hacemos hincapié en el estudio de los patrones más elementales del grupo de los básicos con objeto de analizar como una sutil variación en la forma o el color produce efectos anímicos y visuales muy diferentes y así facilitar el proceso de análisis y creación de las teselaciones más complejas.
Además de nuevos enlaces volvemos a mostrar, por su interés, algunos de los ya expuestos en entradas anteriores:
Para quien considere necesaria una inmersión en los conceptos básicos relacionados con las teselaciones hemos preparado los siguientes contenidos:
La imagen anterior enlaza con una unidad que, en su día, desarrolló el profesor Ángel Aguirre Pérez y que he comenzado a adaptar a DescartesJS debido a que sus objetivos son similares a los que nos proponemos en este artículo y por tanto nos introduce en el tema de la forma clásica y básica.
Consideramos, por tanto, que el estudio se centra en el problema clásico de la cuadratura del círculo y que nos acercamos a él haciendo, primero, la cuadratura de algunos polígonos regulares y no regulares. No debe olvidarse la idea de círculo como límite, cuando el número de lados tiende a infinito, de los polígonos regulares.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Currículo para ESO y Bachillerato.
Todos los trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.
A poco que se observen los trabjos de teselción expuestos o enlazados se evidencia que en cada uno de ellos se reproduce un patrón. Existe un amplio grupo de patrones y entre los más elementales están los conocidos como 'tipo mitad del cuadrado' que son los que se obtienen descomponiendo el cuadrado en dos o más partes diferenciadas, en nuestro caso, por el color, de manera que ambas formas tengan igual área. A continuación se exponen varios ejemplos de estos patrones que aclaran el concepto.
A continuación exponemos los trabajos que desarrollan la cuadratura del pentágono regular, tanto con DescartesJS como con GeoGebra.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra la creación, paso a paso, de una tesela reutilizando un "cede (CD)".
Interesante manualidad sobre teselación.
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con las cuadraturas estudiadss para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos. Cuadraturas"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
Una forma lúdica de teselar es resolver un rompecabezas, esto es un ejercicio para ejercitar la memoria visual y otras habilidades por lo que proponemos, temporalmente, un amplio grupo de puzles para su resolución, uso y disfrute.
Juegos para entrenar la memoria visual.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
Esta semana presentamos una serie de objetos interactivos que forman el grupo PISA 2017 (con algunos objetos diseñados para la modalidad de evaluación con papel y otros con ordenador), patrocinado por el INTEF del Ministerio de Educación de España, para 4º de Educación Secundaria.
Este grupo pertenece al Proyecto Competencias, un proyecto de la RED Descartes con múltiples actividades interactivas para la formación y evaluación competencial. Sus contenidos se basan en las unidades liberadas de PISA y en las Pruebas de Evaluación de Diagnóstico de diferentes Comunidades Autónomas españolas.
Como muestra de las actividades, en el siguiente vídeo, se puede ver con detalle la unidad interactiva meteoroides y cráteres perteneciente a este grupo.
Este mes vamos a ver una unidad de Probabilidad de 4ºESO:
Hemos tratado estos puntos:
1.Experimentos aleatorios
Espacio muestral y sucesos
Operaciones con sucesos
Sucesos compatibles,incompatibles
2.Probabilidad de un suceso
Regla de Laplace
Frecuencia y probabilidad
Propiedades de la probabilidad
3.Experiementos compuestos
Regla de la multiplicación
Extracciones con y sin devolución
Probabilidad condicionada
Probabilidad con diagramas de árbol
Los problemas clásicos de la geometría griega son, por activa o por pasiva, fuente inagotable de inspiración. En esta ocasión el estudio de los lugares geométricos nos llevó a sus orígenes por ende a Hípias, Dinostrato, Arquímedes... e inevitablemente a la cuadratura dinámica del círculo, esto es, a la cuadratura de cualquier polígono regular; o no, con cualquier número de lados. Resultando que, aparentemente, en la base de este proceso está el cuadrado. Motivo por el cual decidimos estudiar este polígono. Ahora bien, al intentar analizar el cuadrado este, en sí mismo, parece desaparecer mostrando como en su interior subyacen infinidad de polígonos: triángulos, cuadrados, rectángulos, trapecios, rombos… y una infinidad de otras formas inexistentes, virtuales, cuya proyección a la realidad tangible proporcionan, probablemente, los objetos y formas más útiles, en todos los sentidos, para el ser humano. Puede comprobarse como el trazo de unas pocas líneas en un cuadrado y a continuación al realizar el teselado del plano con el mismo, aparecen, de manera dinámica, formas que son el resultado de la composición de una traslación y/o de un giro; u otros, y como la visión de conjunto, a veces un palíndromo geométrico bidimensional, sugiere formas, sensaciones y conceptos cambiantes. Este procedimiento constructivo es el que los siguientes enlaces y escenas interactivas pretenden analizar aún cuando sea basándonos en los conceptos teóricos básicos y en los efectos visuales elementales que intervienen en el proceso.
La imagen siguiente está vinculada a la miscelánea que recoge un resumen de las ideas visuales expuestas a lo largo de esta entrada.
Para quien considere necesaria una inmersión en los conceptos básicos relacionados con las teselaciones hemos preparado los siguientes contenidos:
La imagen anterior enlaza con una unidad que, en su día, desarrolló el profesor Ángel Aguirre Pérez y que he comenzado a adaptar a DescartesJS debido a que sus objetivos son similares a los que nos proponemos en este artículo y por tanto nos introduce en el tema de la forma clásica y básica.
Consideramos, por tanto, que el estudio se centra en el problema clásico de la cuadratura del círculo y que nos acercamos a él haciendo, primero, la cuadratura de algunos polígonos regulares y no regulares. No debe olvidarse la idea de círculo como límite, cuando el número de lados tiende a infinito, de los polígonos regulares.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.
cubo de colores (origen de la imagen)
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Currículo para ESO y Bachillerato.
Todos los trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.
A poco que se observen los trabjos de teselación expuestos o enlazados se evidencia que en cada uno de ellos se reproduce un patrón. Existe un amplio grupo de patrones y entre los más elementales están los conocidos como 'tipo mitad del cuadrado' que son los que se obtienen descomponiendo el cuadrado en dos o más partes diferenciadas, en nuestro caso, por el color, de manera que ambas formas tengan igual área. A continuación se exponen varios ejemplos de estos patrones que aclaran el concepto.
Debido a la extensión de la entrada las escenas que desarrollan la cuadratura del pentágono regular, tanto con DescartesJS como con GeoGebra, y otras relacionadas con el tema serán expuestas próximamente.
En esta ocasión, en la sección de vídeo, hemos elegido la tercera parte de la colección que muestra la deducción, paso a paso, de la cuadratura del círculo usando el número de oro.
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos (cuadraturas) estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos. Cuadraturas."; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017