Jueves, 13 Abril 2017 10:13

Ciencias Naturales con Descartes

Escrito por
Valora este artículo
(6 votos)

En este vídeo presentamos una serie de unidades de la Red Descartes para los cursos de la ESO dentro del área de Ciencias de la Naturaleza. Se trata de actividades interactivas y de autoevaluación que se han elaborado partiendo de unidades liberadas del Programa Internacional PISA y que han sido desarrolladas en el proyecto de la RED ASIPISA. Al final del vídeo se indican los pasos a seguir para insertar esta selección de materiales en un espacio web, en este caso en un blog de WordPress.

En concreto se han seleccionado las siguientes actividades:

  • Los autobuses: Actividad relacionada con el movimiento de los cuerpos, la inercia y los grados de contaminación de las diferentes energías usadas en el transporte.
  • Las Moscas: A partir de un problema de superpoblación de moscas en una determinada granja, se elabora un estudio sobre un determinado producto para la fumigación y su efecto, con una serie de gráficos que indican la eficacia del producto a lo largo del tiempo.
  • Detengan ese germen: Se relatan diferentes experimentos de investigación sobre la inmunidad en determinadas enfermedades.
  • Luz del día II: Trata aspectos relacionados con el movimiento de rotación de la Tierra, la inclinación de su eje y el movimiento de traslación alrededor del Sol.

Valora este artículo
(6 votos)

Este mes vamos a ver la unidad correspondiente de funciones:

En este vídeo hemos tocado los siguientes puntos:

1. Funciones polinómicas
   Función de proporcionalidad directa
   Funciones afines
   Funciones cuadráticas

2. Otras funciones
   Función de proporcionalidad inversa
   Función exponencial
   Funciones definidas a trozos
   Función valor absoluto

Valora este artículo
(3 votos)

Lugares geométricos: Epicicloides e Hipocicloides.

Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Epicicloides" e "Hipocicloides" que son un tipo de Epi/Hipo Trocoides que a su vez son una clase de las Ruletas.

Dentro del amplio grupo de cicloides analizaremos los ll.gg. generados por un punto de una circunferencia, o dependiente de ella, cuando dicha circunferencia, a la que llamamos generatriz, gira sin deslizar, de forma tangencial, alrededor de otra circunferencia llamada directriz. Esto es, nuestro estudio se centra en uno de los tipos de las curvas planas cíclicas llamadas Ruletas.

Si la generatriz gira por el exterior de la directriz se genera una Epicicloide, que puede ser: ordinaria, epitrocoide acortada o epitrocoide alargada según la posición del punto generador respecto a la circunferencia generatriz de la que depende. Análogamente, si la generatriz gira por el interior de la directriz el l.g. generado es una hipocicloide que a su vez puede ser: ordinaria, hipotrocoide acortada o hipotrocoide alargada según veremos más adelante.

Para llevar a la práctica el estudio se han creado dos escenas: "epitrocoides.html" e "hipotrocoides.html" que se enlazan en la siguiente imagen que muestra como la utilidad "hipotrocoides.html" genera dos ll.gg. uno color rosa conocido como Deltoide (R/r=3) y el otro, de color azul, una hipotrocoide acortada. Esto es así porque se han considerado dos puntos generadores: uno en la circunferencia generatriz y otro, en este caso, interior a la misma. Ver detalles de la escena, dejando repetir la animación, o leer las instrucciones, hasta comprender el proceso de creación de los ll.gg.

cicloides

Para profundizar en el estudio de los lugares geométricos y en el de uso del editor DescartesJS, hemos elaborado, de forma muy esquemática, las pequeñas utilidades mencionadas anteriormente. Son escenas basadas en la obra del profesor Ricardo Sarandeses Fernández, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS. A propósito del nuevo editor hemos utilizado, a modo de plantilla, los extraordinarios recursos que la documentación del mismo enlaza en la web de sus creadores. La cantidad de ejemplos-ejercicios ofrecidos hacen que el potencial didáctico y de reutilización de dicha documentación y los ejemplos que la acompañan sea digno de mención ya que con un mínimo esfuerzo, cualquiera de esos abundantes trabajos, puede ser adaptado y servir así de plantilla para un proyecto personal tal como muestran los anteriores y el siguiente enlace.


Introducción al concepto de probabilidad

En ambas escenas, de las dos relacionadas con los ll.gg., se ha puesto especial énfasis en el proceso de elaboración de las ecuaciones paramétricas del l.g. lo que se manifiesta al analizarlas. Por otra parte las dos utilidades pueden ser reducidas a una sola muy fácilmente, lo que dejamos como ejercicio.

Indicamos que:

  • Si se desea volver a ver la generación del l.g. o la realización de cualquier actividad desde el principio y con la escena despejada es suficiente con pulsar el botón inicio y efectuar las acciones adecuadas.
  • Los pulsadores R, r y a definen la forma de los ll.gg. generados. Estos lugares podrian representarse, una vez configurados, mediante sus ecuaciones paramétricas; aunque hemos elegido visualizar su creación dinámica mediante una animación.

Como en anteriores ocasiones notamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con los propósitos de ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.

La siguiente utilidad genera una amplia colección de epicicloides/epitrocoides según los valores que asignemos a los deslizadores. Conviene observar la animación para comprender la influencia que las asignaciones ejercen sobre los gráficos.


hoja de trabajo de las epicicloides

En la escena que enlaza la siguiente imagen se usa la ecuación de la curva para representarla una vez se conocen los valores que la definen.
Cuando el cociente R/r es un número natural la cicloide se completa en la primera vuelta de la generatriz, en cualquier otro caso es conveniente analizar el cociente anterior para preveer el comportamiento de la curva. La utilidad da un máximo de 10 vueltas, valor que puede modificarse para que se adapte dinámicamente a la situación y así hacer una aplicación más eficiente.
Al igual que en el caso de las epicicloides es conveniente analizar la animación.


hoja de trabajo de las hipocicloides

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

En esta ocasión en la sección de vídeo hemos elegido de nuevo, debido a su indudable interés, dos de entre las muchas composiciones de Milton Donaire publicadas en YouTube.
La primera trata sobre el teorema de Menelao y la segunda sobre el teorema de Giovanni Ceva. El objetivo  es el de apreciar la influencia directa, e indirecta, que el conocimiento del triángulo y de las razones geométricas tiene en el tema que nos ocupa: "Los Lugares Geométricos".

Teorema de Menelao

Teorema de Giovanni Ceva

Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:


Ildefonso Fernández Trujillo. 2017

 

 

Sábado, 11 Marzo 2017 00:14

Dibujar rectas con Descartes

Escrito por
Valora este artículo
(4 votos)

El objeto dibujar funciones cuya gráfica es una línea recta que presentamos hoy pertenece al proyecto miscelánea de la RED y tiene como objetivo aprender a dibujar funciones reales de variable real cuya representación gráfica es una línea recta.

Los coeficientes de las funciones lineales se modifican aleatoriamente y para su representación se puede elegir dados dos puntos o dado un punto y la pendiente. Una vez seleccionada la función y los datos, se inicia una animación que muestra los pasos a seguir. Al finalizar la animación se puede seleccionar un nuevo ejercicio que se puede resolver en el cuaderno y después activar la animación para comprobar si se ha realizado correctamente.

En este vídeo se muestra también cómo embeber un objeto digital en un espacio web, en este caso un curso Moodle, utilizando el código para embeber: 

  <iframe style="width: 810px; height: 585px;" src="/descartescms/ http://proyectodescartes.org/miscelanea/materiales_didacticos/dibujar_funciones_con_grafica_una_recta-JS/index.html"></iframe>
Página 8 de 26
SiteLock

Módulo de Búsqueda

Frase Clave

Título del artículo

Categoría

Etiqueta

Publicador

Ayuda

Acceso

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information