buscar Buscar en RED Descartes    

Misceláneas. Lugares geométricos. Cuadraturas.

CUADRATURAS.

Adentrarse en el estudio de los lugares geométricos es estar, literalmente, predispuesto a perderse dentro de la espiral del tiempo en un ir y venir por las expresiones artísticas, religiosas, estructurales y técnicas de las diferentes culturas y épocas. Los conceptos, fundamentalmente los geométricos, físicos y filosóficos aparentan una evolución-involución atractiva y armónica que fascina. Esta es la razón por la que en esta entrada vamos a continuar la aproximación al conocimiento genérico de los ll.gg. analizando algunos aspectos de las Cuadraturas, asuntos estos tan íntimamente ligados que, a veces, es difícil discernir cuál es la causa y cuál el efecto.

Recordamos que el estudio de las cuadraturas, los ll.gg. y la descomposición de un polígono en otros más pequeños que lo recubren completamente con objeto de, con ellos, recubrir otro polígono diferente, están ligados, también, al estudio de las teselaciones.

Aprovechamos la oportunidad para señalar el aspecto popular, lúdico, espiritual y funcional que la Geometría clásica, la Cosmología, la Astronomía y en general el conocimiento ha tenido en las poblaciones cultas.

Consideramos, por tanto, que el estudio se centra en el problema clásico de la cuadratura del círculo y que nos vamos a aproximar a él haciendo, primero, la cuadratura de algunos polígonos regulares y no regulares. No debe olvidarse la idea de círculo como límite, cuando el número de lados tiende a infinito, de los polígonos regulares.

Misceláneas. Lugares geométricos: las cónicas III

Las cónicas como lugares geométricos: La Parábola.

Dentro del estudio de los lugares geométricos tienen un especial interés los relativos a las cónicas por motivos muy diversos, fundamentalmente geométricos, físicos y filosóficos. Esta es la razón por la que en esta entrada vamos a continuar la aproximación a su conocimiento genérico analizando algunos aspectos de la Parábola considerada como lugar geométrico. Aprovechamos la oportunidad para señalar el aspecto popular, lúdico y funcional que la Geometría clásica ha tenido en las poblaciones cultas: el cucurucho con sus múltiples aplicaciones, los niños y niñas jugando con el aro, la peonza, el yoyo...

Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.

Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.

  • La Parábola como lugar geométrico.


    El Origami y las Matemáticas

  • Generación de la Parábola como lugar geométrico.
    Trabajo muy detallado de la creación del l.g. Ignacio Larrosa Cañestro (Grupo XeoDin)

Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Curriculum para ESO y Bachillerato.

Ambos trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.

  • Estudio de la PARÁBOLA I. La parábola como l.g. generado por el método, basado en la definición, del triángulo isósceles.
    A partir de una recta d (directriz) y de un punto F (foco) consideramos que un punto del plano, P, pertenece a la parábola (F,d) si la distancia de P a M (ver imagen) es igual a la distancia de P a F. Esto es, el triángulo PMF es isósceles y por lo tanto la altura de dicho triángulo trazada desde P corta al lado FM en su punto medio. O bien que la intersección de la perpendicular a la directriz por un punto M de la misma con la perpendicular por el punto medio de FM es un punto de la parábola. Haciendo que M recorra la directriz obtendremos la parábola (F,d).

    parábola tipo I
    parábola l.g. I

  • Estudio de la PARÁBOLA II. En esta ocasión se considera la parábola como el l.g. generado por los puntos, Q y R, intersección de la circunferencia c(F,r) con la paralela a la directriz por el vértice cuando el vértice, como punto virtual v', se desplaza por el eje focal desde su posición original hasta el infinito alejandose de la directriz (ver la animación completa), el radio de la circunferencia, r es igual a la distancia del vértice virtual v' a la directriz.
    Es trivial comprobar que los puntos Q y R siempre son puntos de la parábola.
    Se ha construido el l.g. por este segundo método sobre la construcción anterior por motivos didácticos.

    curvas cónicas no degeneradas
    parábola l.g. II

En la primera escena el botón anima y en la segunda el pulsador k y el botón anima, generan el l.g. (parábola).

Continuamos animando a conocer el editor DescartesJS. Volvemos a exponer la adaptación a DescartesJS de la Unidad realizada por el profesor Antonio Caro Merchante debido a su relación con los conceptos en estudio.


cónicas

Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Parábola, primero por el método del triángulo isósceles y a continuación por el método clásico de la intersección de recta y circunferencia. 

La Parábola. Método I.


hoja de trabajo de la parábola (I)

La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método, intersección de paralela a la directriz con la circunferencia de centro el foco y radio variable..

La Parábola. Método II.


la parábola (método II)

Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

Esta vez en la sección de vídeo hemos elegido uno que muestra la deducción, paso a paso, de la ecuación del lugar geométrico que define a una curva cónica.

Las Cónicas como lugares geométricos

Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

 

 

Misceláneas. Lugares geométricos: las cónicas II

Lugares geométricos: La Hipérbola.

Dentro del estudio de los lugares geométricos tienen un especial interés los relativos a las cónicas por motivos muy diversos y no únicamente cronológicos; si no que también filosóficos, mercantilísticos y geométricos y en esta entrada vamos a continuar la aproximación a su conocimiento genérico analizando algunos aspectos de la Hipérbola considerada como lugar geométrico. Aprovechamos la oportunidad para señalar el aspecto popular, lúdico y funcional que la Geometría clásica ha ejercido sobre las poblaciones cultas: el cono como cucurucho para envolver desde tiempos ancestrales, los niños y niñas jugando con el aro y el yoyo...

Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.

Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.

  • La Hipérbola como lugar geométrico. MB (M. Banasik)
  • Construcción de la hipérbola como lugar geométrico, a partir de un circulo y un punto exterior al círculo. La hipérbola que se genera tiene como focos el centro del círculo y el punto exterior al círculo. DORIS ÁLVAREZ QUINTERO

Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Curriculum para ESO y Bachillerato.

Ambos trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.

  • Estudio de la HIPÉRBOLA I. La hipérbola como l.g. generado, la mitad del mismo, por los puntos de intersección de dos circunferencias: una con centro en el foco F y radio k y otra de centro el foco F' y radio r dependiente del pulsador k, de forma que cuando un radio aumenta el otro también. La otra mitad de la hipérbola se genera intercambiando los radios.

    hipérbola tipo I
    hipérbola l.g. I

  • Estudio de la HIPÉRBOLA II. En esta ocasión se considera la hipérbola como el l.g. generado por un punto, H cuando un punto P gira alrededor de la circunferencia de centro uno de los focos y radio cualquiera r1. El punto H se obtiene de la siguiente forma:
    • Los puntos F y G son dos puntos libres que van a ser los focos de la hipérbola.
    • Se traza la recta que une el centro de la circunferencia, punto F (uno de los focos), con el punto P.
    • Se une el punto P con el otro foco, punto G.
    • Se halla el punto medio del segmento PG, punto M y por él se traza la perpendicular al segmento.
    • La intersección de las dos rectas trazadas es el punto H.

    curvas cónicas no degeneradas
    hipérbola l.g. II

En ambas escenas los pulsadores k y a o el botón anima, generan el l.g. (hipérbola).

Continuamos animando a conocer el editor DescartesJS. Exponemos, en esta ocasión, la adaptación a DescartesJS de una Unidad realizada por el profesor Antonio Caro Merchante


cónicas

Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Hipérbola, primero como el l.g. creado por los dos puntos intersección de las circunferencias con centro en los focos y radios variables y en segundo lugar el l.g. generado por un punto cuando otro se desplaza por una circunferencia.

La Hipérbola. Método I.


hoja de trabajo de la hipérbola (I)

La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método.

La Hipérbola. Método II.


la hipérbola (método II)

Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

Esta vez en la sección de vídeo hemos elegido uno que muestra la creación, paso a paso, del lugar geométrico que define a la hipérbola.

Las Cónicas como lugares geométricos

Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

 

 

Misceláneas: Lugares geométricos. Las Cónicas.

Lugares geométricos: Las Cónicas.

Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de las curvas Cónicas no degenaradas, esto es: de la circunferencia, la Elipse, la Parábola y la Hipérbola consideradas como lugares geométricos. Curvas estas resultantes del trabajo de observación y posterior interpretación geométrica de la relación entre el ser humano y la naturaleza, por parte de los sabios griegos clásicos. En esta ocasión estudiaron la incidencia, en el cono de la visión ocular, de las ondas visibles, con objeto de establecer los principios teóricos del conocimiento de las formas y los colores.

Es de interés recordar que estas curvas están entre las primeras que fueron estudiadas y descritas.

Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.

Dentro del amplio grupo de trabajos relacionados con el tema destacamos los que se enlazan a continuación.

  • Estudio de las CÓNICAS. Trabajo realizado por M. Teresa Pérez y Oscar Arratia. Universidad de Valladolid.

    curvas cónicas no degeneradas
    cónicas propias (no degeneradas)

  • CÓNICAS. De Francisco Orti, profesor del IES Las Fuentezuelas.

    curvas cónicas no degeneradas
    amplio estudio de las secciones cónicas

  • CÓNICAS, del profesor Antonio Caro Merchante. Tanto la unidad didáctica como la miscelánea que sobre este tema creó en su día el profesor Caro Merchante están en fase de adaptación al nuevo editor DescartesJS; no obstante avanzamos algunos resultados, aún provisionales, por el interés didáctico y posibilidad de uso del material en clase para consolidar conceptos y sobre todo como ayuda a la realización de ejercicios sobre cónicas: ecuaciones, tangencias, clasificación,.....

    curvas cónicas
    amplio estudio de las secciones cónicas y las tangencias

Tomando como base, fundamentalmente, la documentación anterior hemos elaborado o adaptado, con DescartesJS, las misceláneas que se exponen a continuación. Queremos notar la intención didáctica de dichos trabajos en los que se condensan una buena cantidad de los conceptos elementales de Geometría del Curriculum.

  • Los trabajos dejan, para quien tenga interés en el tema o desee trabajar la precisión en clase, el ajuste fino de algunas variables controladas con pulsadores.
  • Las siguientes posibles mejoras de la utilidad:
    • convertir los pulsadores en animaciones.
    • mostrar la ecuación de la elipse en algunas de sus formas
    • ampliar la generación del l.g. al caso en el que el eje mayor de la elipse sea el vertical
    • .................
  • Estudio de la ELIPSE I. La elipse como l.g. generado por los puntos, P y P', de intersección de dos circunferencias una con centro en el foco F y otra en el F' ambas con radios dependientes del pulsador k de forma que cuando un radio aumenta el otro disminuye.

    Tanto en esta como en la siguiente miscelánea el pulsador k controla la generación del l.g.

    elipse tipo I
    elipse l.g. I

  • Estudio de la ELIPSE II. En esta ocasión se considera la elipse como el l.g. generado por un punto de un segmento, distinto de los extremos, cuando dicho segmento desliza sin separarse por dos rectas perpendiculares tal como se muestra a continuación.

    curvas cónicas no degeneradas
    elipse l.g. II

  • A continuación exponemos la adaptación a DescartesJS de la miscelánea realizada por el profesor Antonio Caro Merchante como ilustración de la contundencia didáctica del uso interactivo de una utilidad simple, que muestra de forma palpable un único concepto, como la enlazada a continuación.


    propiedad de los puntos de la elipse

    Las miceláneas siguientes, que abordan algunas situaciones de tangencia, son también consecuencia directa del trabajo del profesor Caro Merchante.

  • Estudio de la ecuación de la tangente a una circunferencia por uno de sus puntos.

    tangencias
    tangente en un punto

  • Estudio de las ecuaciones de las tangentes a una circunferencia desde un punto exterior.

    tangencias
    tangentes desde un punto exterior

Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Elipse, primero como el l.g. creado por los dos puntos intersección de las circunferencias con centro en los focos y radios variables y en segundo lugar el l.g. generado por un punto de un segmento cuando dicho segmento se desliza por dos rectas perpendiculares.

La Elipse. Método I.


hoja de trabajo de la Elipse (I)

La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método.

La elipse. Método II.


la elipse (método II)

Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

Esta vez en la sección de vídeo hemos elegido uno que muestra la deducción, paso a paso, de la ecuación del lugar geométrico que define a una curva cónica.

Las Cónicas como lugares geométricos

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

 

 

Misceláneas: Lugares geométricos. Trisectrices de Hipias y Nicomedes.

Lugares geométricos: Trisectrices de Hipias y Nicomedes.

Continuamos con el estudio de los lugares geométricos y en esta entrada volvemos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Trisectriz (Cuadratriz) de Hipias" y "Concoide (Trisectriz) de Nicomedes" que son las curvas resultantes del trabajo de estos sabios griegos para resolver el problema de la trisección de un ángulo.

Dentro del amplio grupo de cicloides y demás ll.gg. retomamos el análisis de los mencionados anteriormente por su especial interés debido a que cronológicamente estas curvas están, después de la circunferencia, entre las primeras que fueron creadas y descritas.

Para llevar a la práctica el estudio remitimos a la publicación en el Blog de dos escenas que los generan de forma interactiva. Se aconseja ver los detalles de estas utilidades, repitiendo la animación, hasta comprender el proceso de creación de los ll.gg. Son escenas basadas en la obra del profesor Pedro González Enríquez, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS; no obstante, debido a su interés, las siguientes imágenes enlazan directamente con cada uno de los trabajos en su estado actual.

Estudio de la Trisectriz (Cuadratriz) de Hipias.

cuadratriz de hipias

Estudio de la Concoide de Nicomedes

Concoide de Nicomedes

Animamos a conocer las nuevas caractrísticas del editor DescartesJS. Exponemos otra vez el ejemplo sobre probabilidad publicado en la entrada anterior como ilustración de lo que se puede hacer, en muy pocos minutos, reutilizando la documentación que aporta.


Introducción al concepto de probabilidad

Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrea el proceso de generación de la Concoide de Nicomedes, la trisectriz de Hipias y el uso por parte de Dinostrato de dicha trisectriz para hallar la cuadratura del círculo. Como ya se ha explicado esto se hace con el doble propósito de profundizar en el estudio de dichas curvas y ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.

Estudio de la Trisectriz (Concoide) de Nicomedes.


hoja de trabajo de la Concoide

La siguiente imagen es un vínculo a la utilidad que muestra la generación del l.g. "Trisectriz de Hipias" y su uso como trisector de ángulos agudos.

Tiene especial interés la consideración de que según el procedimiento mostrado, cuando el segmento horizontal que se desplaza verticalmente y el que gira alrededor de O, centro del círculo, son ambos horizontales ( k = 0), el punto M intersección de los mismos (generador del l.g.) está indefinido. Esta situación no interfiere en nada a la trisección pues ahí el ángulo a trisecar vale 0 rad, pero si es transcendental considerar la distancia, en ese instante de horizontalidad, del hipotético punto M, deducido por la tendencia de la curva antes y después de ese instante, al centro del círculo.

Dinostrato, entre otros, consideró la tendencia de la curva y llegó a la conclusión de que cuando k → 0 entonces   d(O,M) → 2·r/π, hecho que le permitió cuadrar el círculo usando la trisectriz.

La herramienta enlazada comprueba lo anterior al hacer k = 0.

Estudio de la Trisectriz de Hipias.


trisectriz de Hipias

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

Esta vez en la sección de vídeo hemos elegido uno que muestra la creación de la Concoide de Nicomedes paso a paso. Consideramos que su uso en centros bilingües es muy adecuado por la claridad de la exposición.

Concoide de Nicomedes

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:


Ildefonso Fernández Trujillo. 2017

 

 

Página 25 de 90

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales otras lenguas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information