Título: Desarrollo en serie de Fourier
Sección: Miscelánea
Bloque: Análisis
Unidad: Operaciones con funciones
Nivel/Edad: Universidad (18 o más años)
Idioma: Castellano
Autoría: Elena E. Álvarez Sáiz
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Acceso a la miscelánea: Desarrollo en Serie de Fourier
Con esta escena se puede calcular el desarrollo en Serie de Fourier de una función periódica y representar la suma de sus primeros términos. Su objetivo es mostrar que una función periódica puede descomponerse como suma de funciones trigonométricas, senos y cosenos, cuyas frecuencias son múltiplos enteros de la frecuencia fundamental.
A modo de ejemplo se incluye el desarrollo de varias funciones y se representa, en una misma gráfica, la función y la suma de los primeros términos de su desarrollo. Esta representación permite visualizar la aproximación que proporcionan las Series de Fourier.
La miscelánea facilita también introducir una función cualquiera y obtener su desarrollo utilizando cálculo simbólico para mostrar la expresión de los coeficientes de la serie. Cuando la función no es periódica y está definida en un intervalo de la forma [0, p], se puede obtener el desarrollo en Serie de Fourier de su extensión par o impar.
En el siguiente video se muestra cómo utilizar esta miscelánea.
Acceso a la miscelánea: Desarrollo en Serie de Fourier
Título: Derivada de funciones explícitas, paramétricas e implícitas
Sección: Miscelánea
Bloque: Análisis
Unidad: Derivación de funciones
Nivel/Edad: Universidad (18 o más años)
Idioma: Castellano
Autoría: Elena E. Álvarez Sáiz
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Acceso a la miscelánea: Proyección sobre planos coordenados
En esta miscelánea se muestra cómo proyectar puntos y superficies sobre planos coordenados.
Por defecto, en la escena aparece la proyección de un punto sobre el plano z=0. Sin embargo, también es posible proyectar triángulos y ciertas superficies sobre los tres planos coordenados XY, YZ y XZ.
La proyección de un punto P sobre cualquier plano es aquel punto del plano que se encuentra a distancia mínima de P.
Para proyectar un triángulo T bastará considerar el formado por la proyección de los vértices de T y en el caso de una superfice, su proyección se obtendrá proyectando todos sus puntos. Elegida la opción superficies, la escena permite practicar con porciones de paraboloides o cilindros intersecados por un plano vertical que se encuentran en el primer octante.
En la propia escena se ha incluido un botón con instrucciones que aclaran cómo utilizar esta miscelánea.
Acceso a la miscelánea: Proyección sobre planos coordenados
Título: Gestalt
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría y la Gestalt
Nivel/Edad: ESO-Bach.-Universidad (15 o más años)
Idioma: Castellano
Autoría: Juan Guillermo Rivera Berrío
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Proyección sobre planos coordenados
Sección: Miscelánea
Bloque: Análisis
Unidad: Operaciones con funciones
Nivel/Edad: Universidad (18 o más años)
Idioma: Castellano
Autoría: Elena álvarez Sáinz
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.
Título: Calculadoras geométricas
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 o más años)
Idioma: Castellano
Autoría: Consolación Ruiz Gil
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.
Acceso a la miscelánea: Curvas planas y no planas
En esta ocasión se presenta una miscelánea que permite representar curvas paramétricas en el plano y en el espacio. En este último caso la gráfica de la curva aparece sobre una superficie a partir de las ecuaciones de una curva plana.
La escena permite la elección entre varias curvas y también introducir las ecuaciones paramétricas de la curva que se desee representar.
En la representación gráfica aparece sobre la curva un punto que puede modificarse variando el valor del parámetro. De esta manera, se puede observar cómo se recorre la curva cuando el parámetro toma valores en un cierto intervalo.
En el siguiente vídeo se describe el funcionamiento de la miscelánea.
Acceso a la miscelánea: Curvas planas y no planas
Acceso a la miscelánea: Extremos. Multiplicadores de Lagrange
Se presenta una escena con la que se quiere mostrar la interpretación geométrica del Teorema de los multiplicadores de Lagrange en el caso particular de una función de dos variables que se encuentra sometida a una condición o restricción definida por una ecuación implícita.
Este teorema afirma que en los puntos en los que la función alcanza un extremo condicionado, el gradiente de la función es proporcional al gradiente de la función que define la condición.
Para comprobar este resultado gráficamente, la miscelánea representa, una vez introducida la expresión de la función y la definición de la curva restricción, estos dos vectores en puntos que están sobre esta curva. De esta manera, se puede comprobar fácilmente cuando un punto puede ser extremo condicionado.
El vídeo siguiente explica el funcionamiento de esta escena.
Acceso a la miscelánea: Extremos. Multiplicadores de Lagrange
Se explican, en este vídeo, dos unidades didácticas del Proyecto UN_100:
1.- Cálculo Integral
En la primera unidad se puede ver el Teorema fundamental del Calculo Integral, la Regla de Barrow y una completa escena de práctica del cálculo de primitivas, para finalizar con la aplicación al cálculo de áreas de trapecios mixtilíneos y área encerrada entre dos curvas.
En la segunda unidad se aborda el problema del cálculo de volúmenes de sólidos de revolución, que se obtienen al rotar una región del plano alrededor de una recta de ese mismo plano, que en este caso es el eje OX.