Título: Banco óptico
Sección: Ingeniería y Tecnología
Bloque: Ciencias básicas
Unidad: Física general
Nivel/Edad: Bachillerato/Universidad (17 años o más)
Idioma: Castellano
Autor: Enric Ripoll i Mira
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales del Proyecto Ingeniería y Tecnología en
https://proyectodescartes.org/ingenieria/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Elementos de una gobernanza del riesgo
Sección: iCartesiLibri
Bloque: Ciencias humanas y sociales
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autor: Juan Guillermo Rivera Berrío
ISBN:978-958-56476-5-7
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Geometría analítica del plano
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría analítica plana
Nivel/Edad: Bachillerato y Universidad(16 años o más)
Idioma: Castellano
Autora: Mª José García Cebrian
ISBN:978-958-56476-3-3
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Las cónicas (libro interactivo)
Sección: iCartesiLibri
Bloque: Geometría
Unidad: Geometría analítica plana
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autora: María José García Cebrian
ISBN:978-958-56476-4-0
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Integrando con Paco (libro interactivo)
Sección: iCartesiLibri
Bloque: Análisis matemático
Unidad: Integración
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autores: Juan Guillermo Rivera Berrío, y José Román Galo Sánchez
ISBN: 978-958-58510-7-8
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Los números complejos
Sección: iCartesiLibri
Bloque: Álgebra
Unidad: Números y operaciones
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autora: María José García Cebrian
ISBN: 978-958-56476-0-2
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Estudio y aplicaciones de las funciones trigonométricas y sus inversas
Sección: iCartesiLibri
Bloque: Análisis
Unidad: Funciones trigonométricas
Nivel/Edad: Secundaria y Bachillerato (15 años o más)
Idioma: Castellano
Autores: Rita Jiménez Igea
Diseño y programación del libro: Juan Gmo. Rivera Berrío
ISBN: 978-958-58510-8-5
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Dentro del estudio de los lugares geométricos tienen un especial interés los relativos a las cónicas por motivos muy diversos, fundamentalmente geométricos, físicos y filosóficos. Esta es la razón por la que en esta entrada vamos a continuar la aproximación a su conocimiento genérico analizando algunos aspectos de la Parábola considerada como lugar geométrico. Aprovechamos la oportunidad para señalar el aspecto popular, lúdico y funcional que la Geometría clásica ha tenido en las poblaciones cultas: el cucurucho con sus múltiples aplicaciones, los niños y niñas jugando con el aro, la peonza, el yoyo...
Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Curriculum para ESO y Bachillerato.
Ambos trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.
En la primera escena el botón anima y en la segunda el pulsador k y el botón anima, generan el l.g. (parábola).
Continuamos animando a conocer el editor DescartesJS. Volvemos a exponer la adaptación a DescartesJS de la Unidad realizada por el profesor Antonio Caro Merchante debido a su relación con los conceptos en estudio.
Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Parábola, primero por el método del triángulo isósceles y a continuación por el método clásico de la intersección de recta y circunferencia.
La Parábola. Método I.
hoja de trabajo de la parábola (I)
La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método, intersección de paralela a la directriz con la circunferencia de centro el foco y radio variable..
La Parábola. Método II.
Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
Esta vez en la sección de vídeo hemos elegido uno que muestra la deducción, paso a paso, de la ecuación del lugar geométrico que define a una curva cónica.
Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
Dentro del estudio de los lugares geométricos tienen un especial interés los relativos a las cónicas por motivos muy diversos y no únicamente cronológicos; si no que también filosóficos, mercantilísticos y geométricos y en esta entrada vamos a continuar la aproximación a su conocimiento genérico analizando algunos aspectos de la Hipérbola considerada como lugar geométrico. Aprovechamos la oportunidad para señalar el aspecto popular, lúdico y funcional que la Geometría clásica ha ejercido sobre las poblaciones cultas: el cono como cucurucho para envolver desde tiempos ancestrales, los niños y niñas jugando con el aro y el yoyo...
Consideramos, por tanto, que el estudio se centra en los ll.gg. generados por puntos que se mueven en el plano de forma que la razón (excentricidad) entre sus distancias a un punto fijo (foco) y a una recta (directriz) se mantiene constante.
Dentro del amplio grupo de trabajos relacionados con el tema destacamos, además de los que se muestran en la bibliografía, los que se enlazan a continuación.
Tomando como base, fundamentalmente, la documentación anterior hemos elaborado, con DescartesJS, las escenas que se exponen a continuación. Queremos notar que en dichos trabajos se hace uso de gran parte de los conceptos elementales de Geometría del Curriculum para ESO y Bachillerato.
Ambos trabajos dejan, para quien tenga interés en el tema, una buena cantidad de opciones de ampliación y mejora.
En ambas escenas los pulsadores k y a o el botón anima, generan el l.g. (hipérbola).
Continuamos animando a conocer el editor DescartesJS. Exponemos, en esta ocasión, la adaptación a DescartesJS de una Unidad realizada por el profesor Antonio Caro Merchante
Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrean los procesos de generación de la Hipérbola, primero como el l.g. creado por los dos puntos intersección de las circunferencias con centro en los focos y radios variables y en segundo lugar el l.g. generado por un punto cuando otro se desplaza por una circunferencia.
La Hipérbola. Método I.
hoja de trabajo de la hipérbola (I)
La siguiente imagen es el vínculo a la utilidad que muestra la generación del l.g. por el segundo método.
La Hipérbola. Método II.
Proponemos el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
Esta vez en la sección de vídeo hemos elegido uno que muestra la creación, paso a paso, del lugar geométrico que define a la hipérbola.
Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.
Animamos a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
Esta semana presentamos una actividad de introducción a las funciones que forma parte del proyecto iCartesiLibri.
Este proyecto consta de libros dinámicos e interactivos centrados en el aprendizaje autónomo y competencial del estudiante. Los materiales de este proyecto abarcan diferentes áreas de conocimiento.
En este caso hemos seleccionado un objeto de aprendizaje dedicado a la determinación del dominio y rango de una función.