Título: La espiral de Arquímedes
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez, Ángel Cabezudo Bueno e Ildefonso Fernández Trujillo
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Como un tributo a Albert Einstein, autor de la teoría de la relatividad, en el 137.º aniversario de su nacimiento el 14 de marzo de 1879, hemos publicado dos nuevos libros digitales interactivos en el subproyecto iCartesiLibri.
El primero de ellos es sobre la Teoría de la Relatividad y contiene doce escenas interactivas que permiten acercarnos a esta teoría, la cual marcó un hito en la historia de la Física. Se presenta la Teoría de la Relatividad Especial que es la primera formulación que realizó Einstein en 1905 y que es válida para sistemas de referencia inerciales. Ésta es la más adecuada al currículo de Bachillerato. En su análisis descubrimos cómo la razón humana es capaz de elevarse por encima de la intuición.
Pulsando sobre la imagen siguiente puede accederse a su contenido:
El segundo libro, también de Física, está dedicado a los principios de la termodinámica y tiene como objetivo poner de manifiesto el papel que han cumplido las máquinas en la Historia: primero como simples ahorradores de fuerza humana, después como artefactos que aprovechas fuerzas naturales como el viento y finalmente como transformadoras de formas de energía. También se detalla cómo éstas están limitadas por la propia Naturaleza.
Las escenas de ambos libros fueron diseñadas por José Luis San Emeterio Peña y adaptadas por Juan Guillermo Rivera Berrío.
Como novedad en el diseño, los libros presentan una mejora al incorporar el mismo tipo de letra tanto en el interior de las páginas como en las escenas interactivas aportando uniformidad y estilo.
Título: Teoría de la relatividad
Sección: iCartesiLibri
Bloque: Física moderna
Unidad: Relatividad
Nivel/Edad: Bachillerato (16 años o más)
Idioma: Castellano
Autor de las escenas: José Luis San Emeterio Peñal
Concepción, diseño y Edición: Juan Gmo. Rivera Berrío
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Máquinas térmicas
Sección: iCartesiLibri
Bloque: Calor y temperatura
Unidad: Máquinas térmicas
Nivel/Edad: Bachillerato (16 años o más)
Idioma: Castellano
Autor de las escenas: José Luis San Emeterio Peñal
Concepción, diseño y Edición: Juan Gmo. Rivera Berrío
Haz clic en la imagen para abrir el recurso
Código para embeber como iframe | Código para abrir en ventana emergente |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Los fenómenos físicos son dependientes de las características intrínsecas del medio en el que se desarrollan. Por tanto, pueden estar influidos o condicionados por la forma del espacio en el que acontecen o en el que se manifiestan. Por ejemplo, en un espacio euclídeo, dos rayos de luz emitidos en direcciones paralelas continuarán su viaje indefinidamente sin intersecarse. Sin embargo, si el espacio de propagación es curvo, geometrías no euclídeas, convergerán o divergirán según su curvatura sea positiva o negativa.
Hiperboloide, cilindro y esfera con curvatura de Gauss negativa, nula y positiva respectivamente
Fuente de la Imagen wikipedia
¿Cómo un habitante de un determinado mundo puede investigar y conocer la forma del espacio en el que habita? Nosotros, como habitantes tridimensionales, observamos diferencias evidentes en la forma que tienen los mundos bidimensionales, las superficies, representadas en la imagen anterior. Pero un habitante bidimensional de alguno de esos lugares ¿cómo puede saber la forma que tiene la superficie que habita? La respuesta puede encontrarse en una relectura del párrafo inicial realizada desde otra perspectiva, es decir, si ese habitante emite dos rayos de luz y comprueba que divergen, entonces su mundo tiene curvatura negativa; si no se intersecan tiene curvatura nula y se cortan su curvatura es positiva. Así pues, un experimento físico realizado en el mundo que habita le permite determinar y confirmar la forma de su hábitat, lo puede ver matemáticamente, aunque no pueda verlo nunca de una perspectiva exterior. La clave la encontramos en la curvatura, ésta es la herramienta matemática que nos permite saber, observar, lo que nunca podremos ver.
De manera análoga un habitante unidimensional, el de una línea, podrá conocer la forma de su espacio vital si es capaz de determinar la curvatura de la misma y para ello, al igual que antes, puede basarse en algún experimento físico que permita discriminarla. Por tanto, el concepto de curvatura en una línea es un conocimiento previo que ha de comprender y adquirir como base de su investigación. Y al aprendizaje de este concepto le ayuda, nos ayuda, nuestra compañera Consolación Ruiz Gil (Solín) con su unidad didáctica titulada “Curvatura” en la que nos lleva al taller, al laboratorio matemático, y nos introduce progresivamente en ese concepto y en su medida. Para ello:
Así pues, un experimento físico (LIGO) como es la determinación de la existencia de las ondas gravitatorias nos permite adentrarnos en el conocimiento de la forma del mundo que habitamos estos seres físicamente tridimensionales (largo, ancho, alto), anexos o inmersos en una cuarta componente dimensional tiranizada por ése que siempre pasa (“Tempus fugit”). Y todo ello gracias a la curvatura, la curvatura espacio-tiempo.
LIGO ha sido posible gracias a la posibilidad de medir longitudes del orden de 10^-19 m, pero la Teoría de cuerdas plantea que nuestro universo tiene once dimensiones: una temporal, tres espaciales ordinarias y siete compactas inobservables en la práctica y que solamente son relevantes a escalas pequeñas del orden de la longitud de Planck: 10^-35 m. ¡Quedan curvaturas que estudiar!