buscar Buscar en RED Descartes    

Incorporando construcciones Geogebra en escenas Descartes. Ejemplo 1: Ejecutando comandos Geogebra.

La posibilidad de comunicar escenas Descartes con páginas html facilita incorporar resultados obtenidos de la ejecución de comandos Geogebra e incluso construcciones completas que pueden ser manipuladas desde la propia escena.

En este artículo se presenta una primera escena de ejemplo que utiliza los resultados de tres comandos Geogebra: Derivada, Integral y Circunferencia. Estos tres comandos tienen en común que su ejecución devuelve un único valor que puede enviarse a la escena Descartes como una cadena de caracteres. En próximos artículos se verá cómo incorporar los resultados de comandos que devuelven una lista de datos o una lista de listas.

Para poder comprender el código con el que se establece la comunicación desde Descartes, se recuerda la sintáxis de los comandos Geogebra que se utilizan en este ejemplo:

  • Derivada[función,orden]. 

Por ejemplo: Derivada[cos(x),2] calcula la segunda derivada de la función cos(x)

  • Integral[función,extremo_Inf,extremo_Sup].  

Por ejemplo: Integral[cos(x),1,2] calcula la integral definida de la función cos(x) en el intervalo [1,2]

  • Circunferencia[Punto1,Punto2,Punto3].  

Por ejemplo: Circunferencia[(0,0),(1,1),(2,2)] calcula la ecuación de la circunferencia que pasa por los puntos A=(0,0), B=(1,1) y C=(2,2).

La escena Descartes que se presenta en este artículo incluye cuatro espacios.

espacios

Uno de ellos es un espacio HTMLFrame que tiene como identificador el nombre Cal y será el que permitirá la comunicación con la página calculos.html que está vinculada a este espacio a través del parámetro 'archivo'.

La página calculos.html incluye el código javascript necesario para poder enviar y recibir datos de la construcción Geogebra que está embebida en ella. Esta página no necesita ser modificada y debe incorporarse en el mismo directorio que la página que contenga la escena Descartes (de no ser así se tendrá que modificar la ruta de acceso a ella en el parámetro 'archivo' del espacio HTMLFrame).

El funcionamiento de la escena Descartes que se presenta como ejemplo es sencilla. Elegida una de las tres opciones del menú, se inicia la comunicación con Geogebra. Si la opción elegida del menú es 'Calculo de la Derivada' se ejecuta la función Calculo1(), si se elige la opción 'Circunferencia por tres puntos' la función a ejecutar será Calculo2() y en el caso de que la opción sea 'Cálculo de la integral de un intervalo' la función asociada es Calculo3().

Las tres funciones tienen un código similar, en primer lugar construyen una cadena de caracteres con la sintásis del código Geogebra a ejecutar y después inician la comunicación enviando a la página incluida en el espacio Cal el evento 'evalua' pasándole como parámetro esta cadena de caracteres. Por ejemplo, el código incluido en la función Calculo1() es el siguiente:

n1='Derivada['+f+','+orden+']'
Cal.set('evalua',n1)

A la hora de generar la cadena de caracteres n1 se ha utilizado los valores de f y orden que están vinculados a los dos controles que se muestran en la escena para modificar, respectivametne, la expresión de la función y el orden de la derivada.

La página calculos.html, que está asociada al espacio Cal, recibe entonces el mensaje y ejecuta el código asociado al evento 'evalua' tras lo cual devuelve a la escena Descartes el resultado en una cadena de caracteres que siempre tiene por nombre vCalculado.

Todo este proceso es totalmente transparente al autor de la escena que puede utilizar el valor de la variable vCalculado de la misma forma que cualquier otra variable creada en la propia escena. Así, si por ejemplo se quiere representar la función derivada obtenida tras ejecutar Calculo1(), bastaría con:

  1. Evaluar la cadena de caracteres que se ha devuelto con el valor de la derivada: f1=_Eval_(vCalculado)
  2. Definir una función fun1(x)=f1 para poder crear un objeto gráfico de tipo ecuación cuya expresión sea: y=fun1(x)

Se puede practicar con la escena descargándola del siguiente enlace: Ejemplo1_CAS-JS.zip

Descartes en las Jornadas de Matemáticas de Profesores de Cantabria

El último fin de semana de  Febrero se celebró en la Facultad de Ciencias de la Universidad de Cantabria, las VII Jornadas de Enseñanza de las Matemáticas en Cantabria (JEMC) organizadas cada dos cursos por la Sociedad Matemática de Profesores de Cantabria (SMPC). Las JEMC contaron con la asistencia de más de 150 profesores de Matemáticas de todos los niveles educativos: Infantil, Primaria, Secundaria y Universitaria.

Se puede acceder al resumen de las Jornadas en este enlace.

Desde la RED Descartes, Elena Álvarez, presentó el taller titulado "Descartes y Geogebra: una relación de conveniencia" en el que mostró ejemplos de los últimos proyectos promovidos por la Red Descartes para los diferentes niveles educativos y presentó las últimas novedades que proporciona la herramienta Descartes.

Entre estas novedades se enseñó la posibilidad de incluir audios y vídeos interactivos y la capacidad de establecer una comunicación de Descartes con Geogebra. Se exploró algunas de las posibilidades didácticas de esta comunicación a través de varios ejemplos mostrando que el nivel de diálogo que se puede conseguir entre Descartes y Geogebra facilita la construcción de objetos educativos con un alto nivel de interactividad, siendo el procedimiento totalmente transparente para el estudiante que lo utilice.

En próximos artículos se describrirá en detalle algunos de los ejemplos que se expusieron en este taller.

Crear actividad SCORM con Reload a partir de una actividad Descartes

En el siguiente vídeo se muestra cómo incorporar una actividad evaluable realizada con Descartes dentro de Moodle como un paquete SCORM. De esta manera se puede almacenar, en el cuaderno de calificaciones, la puntuación obtenida por el alumno cuando realice la tarea.

Un SCORM (Sharable Content Object Reference Model), es un conjunto de especificaciones técnicas en el ámbito de aprendizaje a través de Internet (e-Learning) que definen la estructura de los contenidos, su comportamiento y el comportamiento de los LMS a la hora de alojar y ejecutar dichos contenidos.

Para realizar el paquete SCORM se ha utilizado, por un lado, la posibilidad de comunicación de las escenas Descartes con páginas html (http://descartesjs.org/documentacion/?p=2729) y, por otro, el editor gratuito de SCORM Reload (http://www.reload.ac.uk/editor.html).

En el video se describen tres etapas con los pasos a realizar:

  • Etapa 1. Crear la actividad y preparar los ficheros para generar el SCORM.
  • Etapa 2. Construir el SCORM que incluya la actividad.
  • Etapa 3. Incorporar la actividad SCORM dentro de Moodle.

Se pueden descargar los ficheros a los que se hace referencia en el vídeo haciendo clic en los siguientes enlaces:

Descartes en la Universidad. Miscelánea: Desarrollo en serie de Fourier

Acceso a la miscelánea: Desarrollo en Serie de Fourier

Con esta escena se puede calcular el desarrollo en Serie de Fourier de una función periódica y representar la suma de sus primeros términos. Su objetivo es mostrar que una función periódica puede descomponerse como suma de funciones trigonométricas, senos y cosenos, cuyas frecuencias son múltiplos enteros de la frecuencia fundamental.

A modo de ejemplo se incluye el desarrollo de varias funciones y se representa, en una misma gráfica, la función y la suma de los primeros términos de su desarrollo. Esta representación permite visualizar la aproximación que proporcionan las Series de Fourier. 

La miscelánea facilita también introducir una función cualquiera y obtener su desarrollo utilizando cálculo simbólico para mostrar la expresión de los coeficientes de la serie. Cuando la función no es periódica y está definida en un intervalo de la forma [0, p], se puede obtener el desarrollo en Serie de Fourier de su extensión par o impar.

En el siguiente video se muestra cómo utilizar esta miscelánea.

Acceso a la miscelánea: Desarrollo en Serie de Fourier

 

Descartes en la Universidad. Miscelánea: Derivada de una función en forma explícita, paramétrica e implícita

Acceso a la miscelánea: Derivada de funciones explícitas, paramétricas e implícitas

En esta miscelánea se muestra cómo calcular la derivada de una función en un punto cuando viene definida en forma explícita, en forma paramétrica o en forma implícita. Para ello se debe introducir la función y el punto y pulsar sobre el botón ¿Cómo se hace? para obtener una descripción del proceso de cálculo.

Las miscelánea permite introducir un valor y comprobar si es la derivada en el punto seleccionado para la función que se esté considerando. Se puede también calcular la recta tangente y normal a la función en el punto.

En el siguiente video se muestra cómo utilizar esta sencilla miscelánea.

Acceso a la miscelánea: Derivada de funciones explícitas, paramétricas e implícitas

Página 3 de 6

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information