buscar Buscar en RED Descartes    

¡Acumulación de acontecimientos, de sentimientos y de agradecimientos!

¡Séptimo aniversario de RED Descartes! ¡Vigésimo segundo del proyecto Descartes! ¡Nuevo récord de páginas servidas desde nuestro servidor!... centros educativos cerrados, sociedad confinada, enfermedad, sufrimiento, muerte... pandemia. ¡Ciencia, investigación, estudio, aprendizaje, esfuerzo, colectividad, solidaridad!

¡Acumulación de acontecimientos, de sentimientos y de agradecimientos!

Cumplir años en tiempos de pandemia superando récords mes a mes gracias al incremento en el número de nuevos amigos que, estando confinados, necesitan satisfacer su aprendizaje y ejercer su docencia en entornos virtuales, provoca una acumulación de sentimientos contrapuestos. Todo acontece a causa de la concatenación de las extrañas y duras circunstancias en las que vivimos en estos días, pero contribuye a la consecución de nuestros objetivos como asociación. Un paradójico oxímoron que desde RED Descartes tratamos de revestirlo aglutinando la ilusión que nos motiva a trabajar altruistamente con el agradecimiento a quienes nos eligen y, que al hacerlo, dan valor y sentido a nuestro esfuerzo. Agradecimiento que hemos de hacer explícito a nuestros patrocinadores: grupo IC e Hidral que desde el mundo empresarial, con profunda visión social, han apoyado nuestro proyecto educativo y obviamente estos logros también son suyos. Gratitud al Ministerio de Educación español por impulsar y promover el desarrollo del proyecto y la herramienta Descartes durante sus primeros catorce años, al Instituto de Matemáticas de la UNAM por auspiciar el desarrollo de DescartesJS, a la Institución Universitaria Pascual Bravo de Medellín (Colombia) promotora de los libros interactivos y a nuestra red hermana ColDescartes. Y a todos los que en estos veintidós años habéis contribuido a que este proyecto, esta RED, sea una realidad.

¡Felicidades a todos los socios y miembros de RED Descartes!

 

22Aniversario


Los cumpleaños, a cierta edad, suelen acumular sentimientos encontrados pues son hitos significativos en los que se interseca el pasado y el futuro, momentos de reflexión en la transición o continuidad vital. Generan alegría y tristeza, esperanza y añoranza, certeza y duda, perdurabilidad y caducidad. Son  momentos en los que lo transcurrido puede, debe, actuar de trampolín para la mejora, más cuando las circunstancias en el entorno no son óptimas y mucho más cuando son más bien desfavorables.

Hoy, 1 de junio de 2020, cumplimos siete añitos como organización no gubernamental sin ánimo de lucro. Hace siete años que decidimos y llevamos a cabo la constitución de la asociación "Red Educativa Digital Descartes". ¡Ya! siete no es mucho, pero es que son veintidós los transcurridos desde que en 1998 surgió el proyecto Descartes, un proyecto de profesorado centrado en la mejora de la educación matemática —en sus orígenes, pero despúes en cualquier materia— usando las TIC y los recursos interactivos desarrollados con la herramienta Descartes A este proyecto, inicialmente promovido por el Ministerio de Educación español y desarrollado a través de él hasta el año 2012, le tuvimos que dar continuidad, impulso y mejora desde una perspectiva independendiente no gubernamental. 

22 trabajando 7RD

 

Este aniversario acontece en el preocupante y difícil contexto de una pandemia que se ha adentrado drásticamente en el entorno educativo impidiendo la relación cotidiana directa entre el alumnado y el profesorado dado que los centros escolares de todos los niveles ¡están cerrados! Un cambio drástico en los procedimientos y metodologías que han tenido que encaminarse al uso intensivo y extensivo de las TIC. Pero para poder llegar a una planificación adecuada, que contribuya a intensificar la adquisición de la competencia de "aprender a aprender" y la de autonomía personal, es necesario contar con recursos que potencien y ayuden a ese logro. Y los recursos de nuestra RED, que han sido desarrollados por profesorado que imbuye en ellos su experiencia de aula, pensamos y valoramos que pueden ayudar significativamente a la consecución de ese objetivo, ahora y siempre. Pero el navegante discente y/o docente que llega a nuestro servidor de contenidos es quien tiene en su mano, literalmente, la capacidad de elección. ¡Y eso es lo que ha hecho!

En junio del pasado año coincidió que festejábamos nuestro aniversario con un récord en el número de páginas servidas en un mes (más de dos millones cuatrocientas mil) y estos tiempos de pandemia se han ido incrementando el número de páginas servidas y a la vez se han concatenando nuevos récords. En marzo, con sabor agridulce, superamos los cuatro millones de páginas, en abril ¡ayudamos en los tiempos del COVID-19! con más de cuatro millones seiscientas mil y en este aniversario comunicamos nuestro nuevo récord al haber superado los cinco millones de páginas en el recién acabado mes de mayo. 


La siguiente tabla refleja un detalle de lo acontecido estadísticamente en este mes de mayo de 2020 en proyectodescartes.org

Si estos logros estadísticos se han ido sucediendo es porque al otro lado de nuestro/vuestro servidor estáis todos vosotros que nos elegís y que retornáis para dar continuidad a vuestro aprendizaje o docencia. Consecuentemente, también hemos de hacer una acumulación equitativa de agradecimientos y daros millones de gracias por dar sentido a nuestra labor altruista.

En ese cúmulo de agradecimientos hemos de ser especialmente explícitos en nuestro reconocimiento al grupo empresarial IC S. L. (consultar artículo I y artículo II)  y a la empresa HIDRAL (consultar artículo), porque desde la perspectiva empresarial han puesto de manifiesto de manera nítida que la formación y la educación es un pilar básico en su modelo de empresa y que en la reinversión social de sus logros y éxitos, ése es un foco básico de interés. Gracias a su patrocinios económicos hemos tenido suficiente holgura monetaria para disponer y mantener, durante los años 2017, 2018 y 2019,  la imprescindible infraestructura TIC para el alojamiento de contenidos y difusión de los mismos y, así, poder llegar a todos los amantes del saber y del aprender que nos visitáis. Este agradecimiento se refleja en muchos recursos (pulsad sobre las imágenes para ver un par de ejemplos)  

patrocina HIDRAL             patrocina HIDRAL

 

También hemos de agradecer grandemente al Instituto de Matemáticas de la UNAM (Universidad Nacional Autónoma de México) el patrocinio para el mantenimiento y mejora de la herramienta DescartesJS y a José Luis Abreu León que con genialidad y eficiencia ha mimado y mima a Descartes en esta extensa e intensa trayectoria de veintidós años. Y a Joel Espinosa Longi y a Alejandro Radillo Díaz que aportan su buen hacer y saber, y su juventud, dando continuidad vital a la herramienta y con ella al proyecto.

imateunam

Nuestro agradecimiento a la Institución Universitaria Pascual Bravo de Medellín (Colombia) por su apoyo directo al proyecto Descartes y especialmente por impulsar los libros interactivos y publicarlos bajo su sello editorial, y a nuestra red hermana "Red Educativa Digital Descartes Colombia" que no sólo suma sino que multiplica poniendo de manifiesto la sinergia de la colaboración.

IUPascualBravo    

Y en la reflexión acerca de lo vivido hay que remontarse al nacimiento y a los primeros años, aquellos en los que se asientan los pilares de un futuro seguro y firme, y así agradecer a Agustín Quintana Alonso y a Juan Madrigal Muga, que desde el Intef del Ministerio de Educación español, vislumbraron y trazaron las líneas primigenias del proyecto Descartes, atisbando que este proyecto educativo tenía que configurarse como un proyecto de profesorado en pro de la comunidad educativa, que llegara y se desarrollara a pie de aula y que introdujera cambios metodológicos apoyados en la tecnología, pero donde ésta quedara diluida.

Ministerio Educación de España intef

Agradecimiento a todos los pioneros cartesianos que, en el interludio de cambio del siglo XX al XXI, acudieron con ilusión a trasladar su inquietud y experiencia profesional en los albores de Descartes y que aportaron los mimbres con los que se empezó a dar forma a un proyecto y a una realidad —perdonad que no detalle aquí vuestros nombres, la lista es amplia y sería muy probable que cometiera una omisión imperdonable, todos estáis reflejados en nuestro servidor de contenidos a través de las aportaciones que habéis ido realizando—. Gratitud a quienes conformaron proyectos de profesorado análogos usando la herramienta Descartes como el proyecto Newton (hoy unificado dentro de la RED Descartes) y a todos los que en estos veintidós años habéis dedicado en algún momento parte de vuestro saber, de vuestro tiempo y de vuestra experiencia aportando lo que habéis podido, sin cuantificar si es poco o mucho porque toda contribución es importante. 

Y, finalmente, agradecimiento infinito a todos los socios de RED Descartes por haber constituido esta asociación y seguir con empeño contribuyendo día a día a la consecución de sus objetivos estatutarios.

 ¡Continuamos...! ¡Con ilusión iniciamos un nueva vuelta al Sol... con Descartes!

Superficies desarrollables con Descartes

En este artículo se describen y clasifican las superficies regladas desarrollables poniendo de manifiesto que éstas son cilindros, conos y superficies tangenciales. Y, mediante el uso de Descartes, se permite al usuario abordar la construcción virtual de "su" cilindro y cono personalizado, pero también se le da la posibilidad de convertirlo en un objeto tridimensional tangible sin más que proceder a la obtención automática de su desarrollo plano y, mediante su impresión en papel, proceder a su construcción. 

Superficies regladas desarrollables

Una superficie es reglada si está constituida por una familia de rectas. Todas estas superficies se pueden parametrizar como:

sp1                  (1)

donde cu y du son curvas en el espacio tridimensional. La primera es la curva base o curva directriz y la segunda es el vector director de cada una de las rectas (generatriz). Efectivamente, fijado un valor del parámetro u puede observarse que la expresión obtenida es la ecuacion de una recta y, variando  u, geométricamente lo que se puede interpretar es que se va recorriendo cada punto de la curva base cu y por él pasa una recta cuya dirección viene dada por du.

También puede expresarse de manera equivalente como:

sp2           (2)

que algebraicamente representa, para cada valor de u, a una recta (o un segmento si consideramos 0 ≤ ≤ 1), pero en este caso lo que se pone de manifiesto es que esa recta se apoya en un punto de la curva c1u y en otro de la c2u.

El ejemplo más simple de superficie reglada es un plano, pero entre otras, también lo son los cilindros, los  conos, la banda de Moebius, el hiperboloide, etc.

cilindrogeneralizado conogeneralizado
 Cilindro generalizado  Cono generalizado
 MobiusStrip-01  Ruled hyperboloid
 Banda de Möbius  Hiperboloide

 

Una herramienta matemática que permite caracterizar la curvatura de cualquier superficie regular es la denominada curvatura de Gauss, y se verifica que dicha curvatura es invariante por isometrías. Todas las superficies regladas cumplen que su curvatura de Gauss es menor o igual que cero y, en particular, que la curvatura de Gauss de un plano es identicamente nula. En base a lo anterior, todas las superficies regladas que tienen curvatura cero son isométricas con el plano y son denominadas como  superficies desarrollables ya que, consecuentemente, pueden construirse a partir de su desarrollo plano.

En la parametrización (1) la condición de curvatura nula equivale a que el denominado parámetro de distribución sea nulo, y éste viene dado por:

pdistribucion     (3)

o en el caso de la parametrización (2) como:

pdistribucion2        (4)

De (4) se observa que para que la superficie reglada sea desarrollable tiene que ocurrir que para todo el vector tangente a la curva c1u, el vector tangente a c2u y el vector director de la recta que une a ambas curvas sean coplanarios al ser el producto mixto de los tres cero, o dicho de otra forma que el plano tangente es constante  lo largo de cada recta generatriz.

Pero un análisis más detenido de cuándo es identicamente nulo el parámetro de distribución nos puede permitir clasificar a las superficies desarrollables. Así en la expresión (3):

    1. Si dp es identicamente nulo, entonces du es un vector constante, es decir que todas las rectas tienen la misma dirección y la superficie es un cilindro generalizado de ecuación ecilindro.
    2. Si  cp es idénticamente nulo, entonces cu es el vector de posición de un punto y la superficie desarrollable es un cono generalizado de vértice V, cuya ecuación sería econo. También puede expresarse en función de una curva base como rcono.
    3.  En cualquier otro caso se demuestra que es una superficie tangencial, que mediante un cambio de parámetro se puede expresar como estangencial.

Superficies desarrollables con Descartes

En el proyecto "El metro: patrón inexacto para medir exactamente", que en el año 2004 contó con una ayuda de la Junta de Andalucía (España) para la elaboración de materiales y recursos educativos digitales, desarrollamos con Descartes en su versión Java algunos objetos educativos interactivos sobre conos y cilindros generalizados incluyendo la posibilidad de obtener su desarrollo plano. En este año 2020 hemos procedido a adaptarlos a DescartesJS y a mejorar sus posibilidades, en particular en lo relativo a forma de obtener ese desarrollo plano, a incluir  la posibilidad de su impresión y consecuentemente a la posibilidad de su reproducción tangible tridimensional. Estos recursos actualizados están publicados en el subproyecto "misceláneas" de la RED Descartes y los enlazamos a continuación aquí en dos triadas de imágenes que respectivamente se corresponden con cilindros y conos generalizados.

En la primera triada correspondiente a los cilindros tenemos:

  • "Cilindro generalizado" donde se muestra la construcción de un cilindro tomando como curva base una elipse y en la que podemos cambiar la dirección de la recta generatriz. La escena permite reproducir la generación del cilindro mediante desplazamiento de la generatriz sobre la curva base; simular y obtener el desarrollo plano; imprimir dicho desarrollo y el de las bases del cilindro. Adicionalmente, dado el contexto en el que se desarrolló originalmente esta escena —el metro—, se puede obtener un sistema de referencia basado en meridianos y paralelos.
  • "Ejemplos de cilindros generalizados" donde se puede elegir diferentes curvas base (circunferencia, elipse, parábola, rama de hipérbola, segmento, cardiode, deltoide, bifolium, astroide, bicircular) y reproducir las acciones indicadas en la escena anterior. 
  • "Construyo mis cilindros" que como indica el título permite al usuario definir la curva base en coordenadas paramétricas y la dirección de la generatriz que desee y con ellas construir su cilindro generalizado. De nuevo puede realizar de manera virtual interactiva las acciones ya indicadas, pero también procediendo a la impresión del desarrollo pasar a disponer de la versión tangible de "su" cilindro. Para cada curva base cambiando el número de segmentos que se desean considerar en la representación se obtienen diferentes cilindros, para simular el caso continuo basta seleccionar un número de segmentos suficientemente elevado. 
cilindro generalizado cilindro generalizado, ejemplos construyo mis cilindros
 Cilindro generalizado  Ejemplos de cilindros generalizados  Construyo mis cilindros

 

De manera análoga en la triada correspondiente a los conos generalizados tenemos:

  • "Cono generalizado" en el que se  muestra la construcción de un cono tomando como curva base una elipse y en la que podemos cambiar su vértice. La escena interactiva permite reproducir la generación del cono mediante desplazamiento de la generatriz sobre la curva base; visualizar el cono completo; simular y obtener el desarrollo plano; imprimir dicho desarrollo y el de la base del cono. Adicionalmente, dado el contexto en el que se desarrolló originalmente esta escena —el metro—, se puede obtener un sistema de referencia basado en meridianos y paralelos.
  • "Ejemplos de conos generalizados" donde se puede elegir diferentes curvas base (las mismas que en el caso de los cilindros) y reproducir las acciones indicadas en la escena anterior. 
  • "Construyo mis conos" que permite al usuario definir la curva base y el vértice y construir su cono generalizado tanto virtual como tangible..
cono generalizado cono generalizado, ejemplos construyo mis conos
 Cono generalizado Ejemplos de conos generalizados Construyo mis conos

 

En estos objetos interactivos se ha considerado que la curva base es una curva plana, así pues, he de ponerme la tarea de incorporar la tridimensionalidad de la curva base y presentarlo en un próximo artículo en este blog. Y, adicionalmente, este trabajo debería incoporar el caso de superficies tangenciales que implictamente, a priori, entraña cierta dificultad si se deja libertad de definición al usuario, pero sobre ello ya hablaremos.  

Finalizo reseñando que para la obtención automática y animada del desarrollo plano del cilindro y el cono se aplica la rotación de Rodrigues descrita en un artículo anterior de este blog. Lo que se hace es plantearlo como el desarrollo plano de un prisma o una pirámide que se ajuste suficientemente al cilindro o cono dado. En la animación siguiente se refleja el desarrollo plano de un cilindro generalizado en el que su base es la curva denominada bifolium.  

Desarrollo plano cilindro

Pulsa sobre la imagen para ampliarla


Bibliografía

Lucas, E. (2017). Superficies regladas [Trabajo fin de grado]. Universidad de Murcia. 

Rosado, E (2010). Superficies regladas [Apuntes docentes]. Universidad Politécnica Madrid.


 

Juego de adivinar imágenes

Adivinanza_Imagenes-JS.png

Título: Juego de adivinar imágenes
Sección: Plantillas
Bloque: Herramientas de edición
Unidad: Juegos
Idioma: Castellano
Autor: Juan Guillermo Rivera Berrío

 pdf32 Haz clic aquí para ver las instrucciones

video Haz clic aquí para ver un vídeo con las instrucciones

 Información Haz clic en la imagen para abrir una muestra de este recurso

  Descargar recursoDescargar plantilla

  

Puedes encontrar todas las plantillas en
https://proyectodescartes.org/plantillas/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Matemáticas operativas

Matemáticas operativas

Título: Matemáticas operativas 
Sección: iCartesiLibri
Bloque: Matemáticas básicas
Unidad: Aritmética y álgebra
Nivel/Edad: Secundaria y Bachillerato (14 años o más)
Idioma: Castellano
Autor: Marco Tulio Mesa Cardona
ISBN: 978-958-52584-7-1

 pdf32 Haz clic aquí para ver una versión en pdf

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htmVer Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

 

Juego memoriza vídeos de YouTube

Memoria_tipo6_YouTube-JS.png

Título: Juego memoriza vídeos de YouTube
Sección: Plantillas
Bloque: Herramientas de edición
Unidad: Juegos
Idioma: Castellano
Autor: Juan Guillermo Rivera Berrío

 pdf32 Haz clic aquí para ver las instrucciones

 Información Haz clic en la imagen para abrir una muestra de este recurso

  Descargar recursoDescargar plantilla

  

Puedes encontrar todas las plantillas en
https://proyectodescartes.org/plantillas/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

 

Página 58 de 195

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales de Matemáticas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information