Título: Geometria analítica del pla
Sección: EDAD
Bloque: Geometría
Unidad: Geometría analítica plana
Nivel/Edad: 4º ESO-E. Académicas (15 a 16 años)
Idioma: Catalán
Autoría: María José García Cebrian
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales del Proyecto EDAD en https://proyectodescartes.org/EDAD/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Epicicloides" e "Hipocicloides" que son un tipo de Epi/Hipo Trocoides que a su vez son una clase de las Ruletas.
Dentro del amplio grupo de cicloides analizaremos los ll.gg. generados por un punto de una circunferencia, o dependiente de ella, cuando dicha circunferencia, a la que llamamos generatriz, gira sin deslizar, de forma tangencial, alrededor de otra circunferencia llamada directriz. Esto es, nuestro estudio se centra en uno de los tipos de las curvas planas cíclicas llamadas Ruletas.
Si la generatriz gira por el exterior de la directriz se genera una Epicicloide, que puede ser: ordinaria, epitrocoide acortada o epitrocoide alargada según la posición del punto generador respecto a la circunferencia generatriz de la que depende. Análogamente, si la generatriz gira por el interior de la directriz el l.g. generado es una hipocicloide que a su vez puede ser: ordinaria, hipotrocoide acortada o hipotrocoide alargada según veremos más adelante.
Para llevar a la práctica el estudio se han creado dos escenas: "epitrocoides.html" e "hipotrocoides.html" que se enlazan en la siguiente imagen que muestra como la utilidad "hipotrocoides.html" genera dos ll.gg. uno color rosa conocido como Deltoide (R/r=3) y el otro, de color azul, una hipotrocoide acortada. Esto es así porque se han considerado dos puntos generadores: uno en la circunferencia generatriz y otro, en este caso, interior a la misma. Ver detalles de la escena, dejando repetir la animación, o leer las instrucciones, hasta comprender el proceso de creación de los ll.gg.
Para profundizar en el estudio de los lugares geométricos y en el de uso del editor DescartesJS, hemos elaborado, de forma muy esquemática, las pequeñas utilidades mencionadas anteriormente. Son escenas basadas en la obra del profesor Ricardo Sarandeses Fernández, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS. A propósito del nuevo editor hemos utilizado, a modo de plantilla, los extraordinarios recursos que la documentación del mismo enlaza en la web de sus creadores. La cantidad de ejemplos-ejercicios ofrecidos hacen que el potencial didáctico y de reutilización de dicha documentación y los ejemplos que la acompañan sea digno de mención ya que con un mínimo esfuerzo, cualquiera de esos abundantes trabajos, puede ser adaptado y servir así de plantilla para un proyecto personal tal como muestran los anteriores y el siguiente enlace.
Introducción al concepto de probabilidad
En ambas escenas, de las dos relacionadas con los ll.gg., se ha puesto especial énfasis en el proceso de elaboración de las ecuaciones paramétricas del l.g. lo que se manifiesta al analizarlas. Por otra parte las dos utilidades pueden ser reducidas a una sola muy fácilmente, lo que dejamos como ejercicio.
Indicamos que:
Como en anteriores ocasiones notamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con los propósitos de ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.
La siguiente utilidad genera una amplia colección de epicicloides/epitrocoides según los valores que asignemos a los deslizadores. Conviene observar la animación para comprender la influencia que las asignaciones ejercen sobre los gráficos.
hoja de trabajo de las epicicloides
En la escena que enlaza la siguiente imagen se usa la ecuación de la curva para representarla una vez se conocen los valores que la definen.
Cuando el cociente R/r es un número natural la cicloide se completa en la primera vuelta de la generatriz, en cualquier otro caso es conveniente analizar el cociente anterior para preveer el comportamiento de la curva. La utilidad da un máximo de 10 vueltas, valor que puede modificarse para que se adapte dinámicamente a la situación y así hacer una aplicación más eficiente.
Al igual que en el caso de las epicicloides es conveniente analizar la animación.
hoja de trabajo de las hipocicloides
Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
En esta ocasión en la sección de vídeo hemos elegido de nuevo, debido a su indudable interés, dos de entre las muchas composiciones de Milton Donaire publicadas en YouTube.
La primera trata sobre el teorema de Menelao y la segunda sobre el teorema de Giovanni Ceva. El objetivo es el de apreciar la influencia directa, e indirecta, que el conocimiento del triángulo y de las razones geométricas tiene en el tema que nos ocupa: "Los Lugares Geométricos".
Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2017
Título: Geometría analítica del plano
Sección: EDAD
Bloque: Geometría
Unidad: Geometría analítica plana
Nivel/Edad: 4º ESO-E. Académicas (15 a 16 años)
Idioma: Castellano
Autoría: María José García Cebrian
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales del Proyecto EDAD en https://proyectodescartes.org/EDAD/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Gestalt
Sección: Ingeniería y Tecnología
Bloque: Ciencias básicas
Unidad: Geometría
Nivel/Edad: ESO/Bachillerato/Universidad (14 años o más)
Idioma: Castellano
Autor: Juan Gmo. Rivera Berrío
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales del Proyecto Ingeniería y Tecnología en
https://proyectodescartes.org/ingenieria/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Continuamos con el estudio del l.g. "Caracol de Pascal". Este l.g. procede directamente de los lugares geométricos estudiados en la Grecia clásica: la Cisoide de Diocles, la Concoide de Nicomedes, la Espiral de Arquímedes, la Duplicatriz de Hipócrates, la Trisectriz de Hipias... que han sido analizados en entradas anteriores en este blog, de hecho, para ciertos valores de los parámetros que lo definen adopta la forma de la cardioide o la funcionalidad de la trisectriz.
De especial interés, para adentrarse en el contexto cultural que promueve el estudio de este lugar geométrico, es observar la producción pictórica del artista alemán Alberto Durero centrando la atención en los motivos geométricos, implícitos y explícitos, que muestra en la mayoría de sus obras.
Para profundizar en el estudio del lugar geométrico y en el de la creación de escenas con el editor DescartesJS, hemos elaborado, a modo de resumen, una escena que recopila parte de las mostradas en la entrada anterior y donde se hace una introducción al estudio de la ecuación cartesiana del caracol generado por el método de la curva plana de tipo ruleta. Esto puede observarse en la siguiente utilidad navegando por las definiciones y en concreto activando la "definición 4" y actuando sobre los controles y botones de la escena para ver las distintas ecuaciones, formas y maneras de generar el lugar geométrico caracol de Pascal.
definiciones.
Para los lectores menos familiarizados con el proceso de creación de escenas DescartesJS indicamos que:
Como en anteriores ocasiones indicamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.
La escena que exponemos a continuación muestra como al ser a = b el caracol de Pascal puede usarse como trisector de ángulos gracias al lazo interior del mismo.
Hemos construido la escena de forma que un control gráfico, A, con el que podemos interactuar desplazándolo por el l.g. en el 1º y 2º cuadrante (notar la simetría) y así definir el ángulo que se desea trisecar con lo que, automáticamente, uniendo el punto A con los extremos horizontales del lazo interior, se obtiene la trisección.
La utilidad admite, como en casos anteriores, una amplia gama de modificaciones y generalizaciones, de fácil implementación, para adecuarse al propósito particular de uso.
Cuando el control A se encuentra sobre la parte superior del lazo se hace una proyección del mismo en la rama exterior del caracol y se determina la trisección del ángulo de la forma habitual.
Caracol como trisectriz.
En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con el propósito de que, analizando los cambios en el proceso de creación de las utilidades se adquiera destreza en el uso de dichos procesos y el necesario conocimiento de ambas plataformas para discernir cuando implementar la interacción que señala la profesora Elena E. Álvarez Sáiz en sus extraordinarios e innovadores artículos en el blog, donde documenta y ejemplifica la manera de llevar a cabo la inclusión del cálculo simbólico mediante GeoGebra en las escenas DescartesJS.
Notar que en la siguiente utilidad hemos alterado el nombre y significado de algunos parámetros.
definiciones
En la siguiente escena se usa el caracol de Pascal como trisector de ángulos .
Debemos advertir que en esta ocasión también se ha cambiado el significado de los parámetros, aunque igual que en la ocasión anterior están perfectamente especificados los cambios en la información que se muestra
caracol trisector
Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.
En la sección de vídeo, hemos elegido uno que trata sobre la identificación de la ecuación, en coordenadas Polares, del caracol de Pascal y algunas de las definiciones que identifican este l.g. así como su construcción con el programa GeoGebra. El objetivo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Los Lugares Geométricos".
Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.
En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.
Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.
Bibliografía:
Ildefonso Fernández Trujillo. 2016
Título: Cuerpos de revolución
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría descriptiva
Nivel/Edad: 2º ESO (13 años)
Idioma: Castellano
Autoría: Eduardo Barbero Corral
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Poliedros
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría descriptiva
Nivel/Edad: 2º ESO (13 años)
Idioma: Castellano
Autoría: Eduardo Barbero Corral
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Áreas y volúmenes de cuerpos esféricos
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría descriptiva
Nivel/Edad: 3º ESO (14 años)
Idioma: Castellano
Autoría: Josep Mª Navarro Canut
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Volúmenes de cuerpos geométricos
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría descriptiva
Nivel/Edad: 2º ESO (13 años)
Idioma: Castellano
Autoría: Josep Mª Navarro Canut
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Áreas de cuerpos geométricos
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría descriptiva
Nivel/Edad: 2º ESO (13 años)
Idioma: Castellano
Autoría: Josep Mª Navarro Canut
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional