Título: La espiral logarítmica, geométrica o equiangular
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez, Ángel Cabezudo Bueno e Ildefonso Fernández Trujillo
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Una hormiga está sobre una superficie que gira a una velocidad angular constante y se está desplazando, también a una velocidad constante, siguiendo una línea recta que pasa por el centro de giro. ¿En qué posición está en cada instante? ¿Cuál es la trayectoria que sigue?
Este planteamiento dinámico conduce a una antiquísima curva estudiada por Arquímedes y que describió, en torno al 225 a. C., en su libro "Sobre las espirales". Por ello lleva su nombre: "La espiral de Arquímedes.
( gif animado descargado desde http://gifsanimados.de/hormigas )
Y en la miscelánea que hemos publicado en nuestro servidor de contenidos puedes ver el camino que sigue nuestra laboriosa hormiga seleccionando las velocidades que desees y observando en qué influyen éstas.
A partir de la construcción dinámica --dependiente del tiempo--, se procede al análisis de esta curva que se inicia con la obtención de la relación --digamos estática o atemporal-- entre la distancia y el ángulo polar. Ésta es la ecuación algebraica en coordenadas polares de la espiral de Arquímedes y nos permite identificar el significado físico de los dos parámetros específicos de la misma. El primero es la posición o distancia inicial al centro de giro o polo y el segundo es la relación entre la velocidad lineal y la angular:
Interactuando con la escena y manteniendo inicialmente el parámetro b fijo, podremos observar como la variación del parámetro a lo que se produce es un giro en la curva, y podremos ver dos ramas que tienen simetría especular.
En el caso particular que b sea cero la espiral degenera en una circunferencia e incluso en un punto si también se tiene que a es cero.
En una última instancia se puede verificar analítica y experimentalmente como todos los puntos de la espiral que están situados sobre la recta de ecuación q = constante son equidistantes entre sí y, por tanto, sus distancias al polo constituyen una progresión aritmética de diferencia 2pb. Por esta razón, a la espiral de Arquímedes, también se le denomina espiral aritmética.
Pulsando sobre la imagen siguiente puedes acceder al contenido de esta miscelánea:
¡Te deseamos un buen aprendizaje siguiendo a nuestra hormiga!
Título: La espiral de Arquímedes
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Bachillerato y Universidad (17 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez, Ángel Cabezudo Bueno e Ildefonso Fernández Trujillo
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Cálculo integral. Integrando con Paco
Sección: iCartesiLibri
Bloque: Análisis
Unidad: Integración de funciones
Nivel/Edad: Bachillerato y Universidad (16 años o más)
Idioma: Castellano
Autoría: Varios autores
Editor: Juan Guillermo Rivera Berrío
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Cálculo diferencial
Sección: iCartesiLibri
Bloque: Análisis
Unidad: Derivación de funciones
Nivel/Edad: Bachillerato y Universidad (15 años o más)
Idioma: Castellano
Autoría: Varios autores
Editor: Juan Guillermo Rivera Berrío
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los libros interactivos de iCartesiLibri en
https://proyectodescartes.org/iCartesiLibri/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Título: Movimiento (I)
Sección: Unidades didácticas
Bloque: Los movimientos
Unidad: Aspectos generales de los movimientos
Nivel/Edad: 1º Bachillerato (16-17 años)
Idioma: Castellano
Autoría: Carlos Palacios
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades de Física y Química en
https://proyectodescartes.org/uudd/index_nivel_fyq.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Título: Gestalt
Sección: Unidades didácticas
Bloque: Geometría
Unidad: Geometría y la Gestalt
Nivel/Edad: ESO-Bach.-Universidad (15 o más años)
Idioma: Castellano
Autoría: Juan Guillermo Rivera Berrío
Haz clic en la imagen para abrir el recurso
![]() |
![]() |
Puedes encontrar todos los materiales de las Unidades Didácticas en
https://proyectodescartes.org/uudd/index.htm - Ver Créditos
Este material está publicado bajo una licencia:
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Se explican, en este vídeo, dos unidades didácticas del Proyecto UN_100:
1.- Cálculo Integral
En la primera unidad se puede ver el Teorema fundamental del Calculo Integral, la Regla de Barrow y una completa escena de práctica del cálculo de primitivas, para finalizar con la aplicación al cálculo de áreas de trapecios mixtilíneos y área encerrada entre dos curvas.
En la segunda unidad se aborda el problema del cálculo de volúmenes de sólidos de revolución, que se obtienen al rotar una región del plano alrededor de una recta de ese mismo plano, que en este caso es el eje OX.
En el subproyecto Un_100, del Proyecto Descartes, nos encontramos un apartado en el que podemos ver tres unidades didácticas que se resumen en el siguiente vídeo:
El Sistema planetario: Modelos geocéntrico y heliocéntrico
En esta unidad se estudian con detenimiento las trayectorias planetarias según Johannes Kepler. Se ve detalladamente la diferencia entre el sistema geocéntrico y el heliocéntrico.
El Sistema planetario: Trayectorias elípticas. Primera Ley de Kepler
Se exponen los parámetros keplerianos que se utilizan para definir una trayectoria elíptica en el espacio y se explica la Primera ley de Kepler que consiste en que todos los planetas siguen trayectorias de tipo elíptico pero cada una con sus valores característicos. Se observan las diferencias entre ellos.
El Sistema planetario: Áreas iguales en tiempos iguales. La segunda Ley de Kepler
Se presenta la Segunda Ley de Kepler que dice que los radios vectores que unen el Sol con cada planeta, barren áreas iguales en tiempos iguales. Se muestra que utilizando esta ley se puede predecir la posición de todos los planetas en todo momento a partir de las de un momento dado.
Con el frío de diciembre nos viene bien un buen libro que poder leer, calentitos en casa. Hoy presentamos cuatro libros para diferentes edades. Para los más pequeños, diversas historias cuyos personajes son los propios números u objetos matemáticos que explican y hacen más entretenido el aprendizaje de sus propiedades. Para la siguiente etapa, también cobran vida los números y las rectas y curvas. Todos ellos incluidos en obras de teatro muy divertidas. Con el tercer libro descubriremos la historia de las matemáticas en sus personajes, a través de un cómic. Y por último para los mayores, nos adentraremos en el mundo del descubridor del último teorema de Fermat.
En el siguiente vídeo descubrirás todos los detalles de estos libros.