buscar Buscar en RED Descartes    

Ecuacións

 

Expresiones algebraicas

Título: Ecuacións
Sección: EDAD
Bloque: Álgebra
Unidad: Ecuaciones y sistemas
Nivel/Edad: 2º ESO-LOMCE (13 a 14 años)
Idioma: Gallego
Autoría: Andrés Casinello Espinosa, José R. Galo Sánchez y Francisco J. Rodríguez Villanego

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales del Proyecto EDAD en https://proyectodescartes.org/EDAD/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

Introducción a los sistemas lineales con un pasatiempo

 

Introducción a los sistemas lineales con un pasatiempo

Título: Introducción a los sistemas lineales con un pasatiempo
Sección: Miscelánea
Bloque: Álgebra
Unidad: Ecuaciones y sistemas
Nivel/Edad: 2º ESO (14 a 15 años)
Idioma: Castellano
Autoría: José R. Galo Sánchez

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

 

 

 

Sobre la forma y el crecimiento cordobés del Nautilus pompilius

   Hay una tendencia a tratar de asociar o encontrar en todo aquello que es bello la proporción áurea o divina, o a construir objetos a partir de esta razón porque se presuponen serán apreciados como bellos por el simple hecho de seguir dicha pauta. Esto, como no, también ha acontecido con la modelación matemática de la concha del Nautilus pompilius sobre la que suele afirmarse que su forma y crecimiento es áureo. Sin embargo, en este artículo se muestra y se analiza en detalle cómo dicha concha lo que realmente sigue es un patrón ubicado en la denominada proporción cordobesa o humana. Con apoyo en un recurso interactivo desarrollado con la herramienta Descartes se motiva el análisis y comportamiento y se procede a partir de la yocto-yotta realidad observada a construir el modelo matemático, el cual se detalla ampliamente.

Pulsando sobre la siguiente imagen se accede a dicho recurso interactivo que se aborda o plantea en seis fases:

      1. Ajuste de la concha por una espiral logarítmica.
      2. Ajuste del sifúnculo por una espiral logarítmica.
      3. Ajuste global por una familia de espirales cordobesas.
      4. Mejora del modelo discreto.
      5. Aproximación de los septos.
      6. Modelo matemático del Nautilus pompilius.

Modelo matemático del Nautilus Pompilius

 informa       

   En cada fase se dispone de un botón de información que, al pulsarlo, da acceso a un detalle de las propiedades que pueden inducirse a partir de la interacción con la escena.
indicaciones
Y en el botón de indicaciones se aborda una introducción, los objetivos, las instrucciones de uso en cada fase y finalmente se enlaza un artículo donde se detalla el análisis matemático realizado.  Este artículo está embebido a continuación o bien puede abrirse y/o descargarse desde este enlace.

 

 

 

 En las conclusiones del artículo anterior afirmamos:

A través del detallado y progresivo análisis realizado hemos ido construyendo la base teórica o modelo matemático que soporta a la bella morfología del Nautilus Pompilius y hemos tratado del encontrar el modelo de crecimiento que conduce a poder explicar y a comprender por qué adquiere esa forma.  Desde su inicio la espiral logarítmica cordobesa tomó presencia y a medida que la mirada se deslizaba hacia algún nuevo detalle esta espiral ha vuelto a imponer su presencia marcándonos y alumbrándonos el camino del descubrimiento y de la adquisición del conocimiento. La belleza del Nautilus pompilius se sustenta en la proporción cordobesa o humana y todo punto de su concha o del interior ha quedado determinado por la intersección de dos espirales cordobesas. El germen o base inicial matemática que explica el por qué acontece todo lo observado, se ha ubicado en el crecimiento gnomónico de un triángulo cordobés, las propiedades de éste se trasladan al desarrollo y comportamiento global detectado y modelado.

Deseamos que nuestro trabajo de investigación satisfaga tu curiosidad y te animamos a interactuar con nosotros bien realizando algún comentario en este blog (los comentarios no se publicarán directamente sino que pasan por una moderación previa a su publicación) o bien escribe al correo de nuestra RED Descartes: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

 

Sobre el crecimiento cordobés del Nautilus Pompilius

 

Sobre el crecimiento cordobés del Nautilus Pompilius

Título: Sobre el crecimiento cordobés del Nautilus Pompilius
Sección: Miscelánea
Bloque: Geometría
Unidad: Geometría plana
Nivel/Edad: Universidad (18 años o más)
Idioma: Castellano
Autoría: José R. Galo Sánchez, Ángel Cabezudo Bueno e Ildefonso Fernández Trujillo

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales de la Miscelánea en
https://proyectodescartes.org/miscelanea/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

 

 

 

 

Equacions

 

Expresiones algebraicas

Título: Equacions
Sección: EDAD
Bloque: Álgebra
Unidad: Ecuaciones y sistemas
Nivel/Edad: 2º ESO-LOMCE (13 a 14 años)
Idioma: Catalán
Autoría: Andrés Casinello Espinosa, José R. Galo Sánchez y Francisco J. Rodríguez Villanego

InformaciónHaz clic en la imagen para abrir el recurso

Descargar recursoDescargar recurso

ComparteCódigo para embeber como iframe ComparteCódigo para abrir en ventana emergente

Puedes encontrar todos los materiales del Proyecto EDAD en https://proyectodescartes.org/EDAD/index.htm - Ver Créditos

Este material está publicado bajo una licencia:
Licencia Creative Commons
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

Página 137 de 196

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Canal Youtube

 Youtube CanalDescartes

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information