(30)
Z
√
a
2
- x
2
dx =
1
2
x
√
a
2
- x
2
+
1
2
a
2
tan
-1
x
√
a
2
- x
2
(31)
Z
x
√
x
2
± a
2
dx =
1
3
(
x
2
± a
2
)
3/2
(32)
Z
1
√
x
2
± a
2
dx = ln
x +
√
x
2
± a
2
(33)
Z
1
√
a
2
- x
2
dx = sin
-1
x
a
(34)
Z
x
√
x
2
± a
2
dx =
√
x
2
± a
2
(35)
Z
x
√
a
2
- x
2
dx = -
√
a
2
- x
2
(36)
Z
x
2
√
x
2
± a
2
dx =
1
2
x
√
x
2
± a
2
∓
1
2
a
2
ln
x +
√
x
2
± a
2
(37)
Z
√
ax
2
+ bx + c dx =
b +2ax
4a
√
ax
2
+ bx + c+
4ac - b
2
8a
3/2
ln
2ax + b +2
p
a(ax
2
+ bx
+
c)
Z
x
√
ax
2
+ bx + c dx =
1
48a
5/2
2
√
a
√
ax
2
+ bx + c
(
-3b
2
+2abx +8a(c + ax
2
)
)
+3(b
3
- 4abc) ln
b +2ax +2
√
a
√
ax
2
+ bx + c
(38)
4
(39)
Z
1
√
ax
2
+ bx + c
dx =
1
√
a
ln
2ax + b +2
p
a(ax
2
+ bx + c)
(40)
Z
x
√
ax
2
+ bx + c
dx =
1
a
√
ax
2
+ bx + c-
b
2a
3/2
ln
2ax + b +2
p
a(ax
2
+ bx + c)
(41)
Z
dx
(a
2
+ x
2
)
3/2
=
x
a
2
√
a
2
+ x
2
Integrals with Logarithms
(42)
Z
ln ax dx = x ln ax - x
(43)
Z
x ln x dx =
1
2
x
2
ln x -
x
2
4
(44)
Z
x
2
ln x dx =
1
3
x
3
ln x -
x
3
9
(45)
Z
x
n
ln x dx = x
n+1
ln x
n +1
-
1
(n + 1)
2
, n 6= -1
(46)
Z
ln ax
x
dx =
1
2
(ln ax)
2
(47)
Z
ln x
x
2
dx = -
1
x
-
ln x
x
5