(30) Z a 2 - x 2 dx = 1 2 x a 2 - x 2 + 1 2 a 2 tan -1 x a 2 - x 2 (31) Z x x 2 ± a 2 dx = 1 3 ( x 2 ± a 2 ) 3/2 (32) Z 1 x 2 ± a 2 dx = ln x + x 2 ± a 2 (33) Z 1 a 2 - x 2 dx = sin -1 x a (34) Z x x 2 ± a 2 dx = x 2 ± a 2 (35) Z x a 2 - x 2 dx = - a 2 - x 2 (36) Z x 2 x 2 ± a 2 dx = 1 2 x x 2 ± a 2 1 2 a 2 ln x + x 2 ± a 2 (37) Z ax 2 + bx + c dx = b +2ax 4a ax 2 + bx + c+ 4ac - b 2 8a 3/2 ln 2ax + b +2 p a(ax 2 + bx + c) Z x ax 2 + bx + c dx = 1 48a 5/2 2 a ax 2 + bx + c ( -3b 2 +2abx +8a(c + ax 2 ) ) +3(b 3 - 4abc) ln b +2ax +2 a ax 2 + bx + c (38) 4
(39) Z 1 ax 2 + bx + c dx = 1 a ln 2ax + b +2 p a(ax 2 + bx + c) (40) Z x ax 2 + bx + c dx = 1 a ax 2 + bx + c- b 2a 3/2 ln 2ax + b +2 p a(ax 2 + bx + c) (41) Z dx (a 2 + x 2 ) 3/2 = x a 2 a 2 + x 2 Integrals with Logarithms (42) Z ln ax dx = x ln ax - x (43) Z x ln x dx = 1 2 x 2 ln x - x 2 4 (44) Z x 2 ln x dx = 1 3 x 3 ln x - x 3 9 (45) Z x n ln x dx = x n+1 ln x n +1 - 1 (n + 1) 2 , n 6= -1 (46) Z ln ax x dx = 1 2 (ln ax) 2 (47) Z ln x x 2 dx = - 1 x - ln x x 5
Created with BuildVu