Products of Trigonometric Functions and Ex- ponentials (117) Z e x sin x dx = 1 2 e x (sin x - cos x) (118) Z e bx sin ax dx = 1 a 2 + b 2 e bx (b sin ax - a cos ax) (119) Z e x cos x dx = 1 2 e x (sin x + cos x) (120) Z e bx cos ax dx = 1 a 2 + b 2 e bx (a sin ax + b cos ax) (121) Z xe x sin x dx = 1 2 e x (cos x - x cos x + x sin x) (122) Z xe x cos x dx = 1 2 e x (x cos x - sin x + x sin x) Integrals of Hyperbolic Functions (123) Z cosh ax dx = 1 a sinh ax (124) Z e ax cosh bx dx = e ax a 2 - b 2 [a cosh bx - b sinh bx] a 6= b e 2ax 4a + x 2 a = b (125) Z sinh ax dx = 1 a cosh ax 13
(126) Z e ax sinh bx dx = e ax a 2 - b 2 [-b cosh bx + a sinh bx] a 6= b e 2ax 4a - x 2 a = b (127) Z tanh ax dx = 1 a ln cosh ax (128) Z e ax tanh bx dx = e (a+2b)x (a +2b) 2 F 1 h 1+ a 2b , 1, 2+ a 2b , -e 2bx i - 1 a e ax 2 F 1 h 1, a 2b , 1+ a 2b , -e 2bx i a 6= b e ax - 2 tan -1 [e ax ] a a = b (129) Z cos ax cosh bx dx = 1 a 2 + b 2 [a sin ax cosh bx + b cos ax sinh bx] (130) Z cos ax sinh bx dx = 1 a 2 + b 2 [b cos ax cosh bx + a sin ax sinh bx] (131) Z sin ax cosh bx dx = 1 a 2 + b 2 [-a cos ax cosh bx + b sin ax sinh bx] (132) Z sin ax sinh bx dx = 1 a 2 + b 2 [b cosh bx sin ax - a cos ax sinh bx] (133) Z sinh ax cosh axdx = 1 4a [-2ax + sinh 2ax] (134) Z sinh ax cosh bx dx = 1 b 2 - a 2 [b cosh bx sinh ax - a cosh ax sinh bx] c 2014. From http://integral-table.com, last revised June 14, 2014. This mate- rial is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose. This work is licensed under the Creative Com- mons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. 14
Created with BuildVu