Estadística


ÍNDICE
 

Definición. Conceptos básicos

 

ESTADÍSTICA. DISTRIBUCIONES UNIDIMENSIONALES.

DEFINICIÓN. CONCEPTOS BÁSICOS


Conceptos básicos. En cualquier estudio estadístico aparecerán los conceptos: individuo, cada uno de los elementos, personas u objetos que se van a estudiar; población, que es el conjunto formado por todos los elementos a los que les vamos a hacer el estudio; muestra, el subconjunto de la población que elegimos para hacer un estudio más reducido.

La Estadística es la parte de las Matemáticas que se encarga del estudio de una determinada característica en una población, recogiendo los datos, organizándolos en tablas, representándolos gráficamente y analizándolos para sacar conclusiones de dicha población.

Según se haga el estudio sobre todos los elementos de la población o sobre un grupo de ella, vamos a diferenciar dos tipos de Estadística:

Estadística descriptiva. Realiza el estudio sobre la población completa, observando una característica de la misma y calculando unos parámetros que den información global de toda la población.

Estadística inferencial. Realiza el estudio descriptivo sobre un subconjunto de la población llamado muestra y, posteriormente, extiende los resultados obtenidos a toda la población.

Veamos dos ejemplos que nos aclaren estos dos tipos de Estadística:

Ejemplo 1. Cuando van a llegar cualquier tipo de elecciones, por ejemplo, las elecciones generales, es muy frecuente que los medios de comunicación nos adelanten los resultados de encuestas o sondeos en los que se nos indica el resultado final de dichas elecciones con una precisión y con un error determinados. Estos sondeos son realizados por distintas técnicas sobre un grupo (muestra) más o menos numeroso de personas. Naturalmente, cuánto mayor sea el número de españoles con derecho a voto encuestados, mayor será la fiabilidad de la encuesta, pero también mayor será el coste del sondeo. El estudio de esta muestra se haría mediante estadística descriptiva, pero lo que nos interesa no es el resultado de este estudio reducido sino el resultado final de las elecciones. El paso de generalizar los resultados de la muestra a toda la población, se hace mediante técnicas de Estadística inferencial. La elección de la muestra debe hacerse mediante métodos de muestreo para que el estudio resulte lo más fiable posible.

Ejemplo 2. Supongamos que estamos en un instituto con un número muy elevado de alumnos y alumnas, por ejemplo 500, y queremos hacer un estudio estadístico sobre su altura.

Un método sería pasar clase por clase y medirlos a todos, esto nos podría llevar un tiempo considerable pero sería la forma más exacta de hacer dicho estudio, aunque es fácil encontrarnos con ausencias y tendríamos que volver varios días y pasar lista para conseguir la estatura de todo el alumnado. Una vez que tengamos todos los datos en nuestro poder los resultados los obtendríamos mediante Estadística descriptiva.

Otra posibilidad podría ser pasar clase por clase, decirle a los alumnos y alumnas que anoten su estatura en un papel y recogerlos todos. También así tendríamos un estudio de Estadística descriptiva, aunque seguramente menos fiable que con el método anterior, pues casi con toda seguridad, y lo digo por experiencia, algunos alumnos escriban su estatura a cálculo y otros, con ganas de bromas, muy por encima o muy por debajo de la realidad.

Y otra posibilidad sería escoger una muestra, es decir un grupo de por ejemplo 50 personas, hacer el estudio descriptivo sobre ellas y después generalizarlo a todo el instituto con Estadística inferencial. En este caso, comprobaríamos por una parte que cuánto mayor sea la muestra más trabajo tendremos, pero más fiable será el resultado final y por otra, que la elección de la muestra debe hacerse de manera que permita también fiarnos del resultado obtenido. Si estamos en segundo de bachillerato, ¿podríamos coger como muestra los 50 alumnos de este curso? ¿Por qué? ¿Qué forma de elegir la muestra se te ocurre?

En cualquiera de los dos ejemplos, ¿cuáles serían los resultados más fiables? 

  Autor: Luis Barrios Calmaestra
Adaptación a DescartesJS: Enric Ripoll i Mira (2018)
 
ProyectoDescartes.org. Año 2017
 
 

Licencia de Creative Commons
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.