10 Dada nuestra hipótesis de que p > q, la probabilidad cae exponencialmente mientras que el número de bloques el cual el atacante debe alcanzar incrementa. Con las probabilidades en contra, si no hace una estocada afortunada desde el principio, sus chances se vuelven extremadamente pequeños a medida que se queda más atrás. Ahora consideramos cuánto necesita esperar el recipiente de una nueva transacción antes de tener la certeza suficiente de que el emisor no puede cambiar la transacción. Asumimos que el emisor es un atacante el cual quiere hacerle creer al recipiente que le pagó durante un rato, luego cambiar la transacción para pagarse de vuelta a sí mismo una vez que ha pasado un tiempo. El receptor será alertado cuando esto suceda, pero el emisor espera que sea demasiado tarde. El receptor genera un nuevo par de claves y entrega la clave pública al emisor poco después de hacer la firma. Esto previene que el emisor prepare una cadena de bloques antes de tiempo al trabajar continuamente hasta que tenga la suerte de adelantarse lo suficiente, y luego ejecutar la transacción en ese momento. Una vez que la transacción es enviada, el emisor deshonesto empieza a trabajar en secreto en una cadena paralela que contiene una versión alterna de su transacción. El recipiente espera a que la transacción sea añadida al bloque y z bloques han sido enlazados después de la transacción. El no necesita saber la cantidad exacta de progreso que al atacante ha logrado, pero asumiendo que los bloques honestos se tardaron el promedio esperado por bloque, el progreso potencial del atacante será una distribución de Poisson con un valor esperado: