Solución

Dado que v(t)=s(t)v (t) = s ′ (t) y a(t)=v(t)=s(t)a (t) = v ′ (t) = s '' (t), comenzamos por encontrar la derivada de s(t)s (t): s(t)=limh0s(t+h)s(t)h=limh03((t+h)24(t+h)+1)(3t24t+1)h=6t4.\begin{aligned} s ' (t) &= \mathop {\lim }\limits_{h \to 0} \frac{s (t + h) −s (t)} {h }\\ &= \mathop {\lim }\limits_{h \to 0} \frac{3 ((t + h)^2−4 (t + h) + 1)− (3t^2−4t + 1)} {h}\\ &= 6t −4. \end{aligned}

Ahora calculamos la derivada segunda s(t)=limh0s(t+h)s(t)h=limh06(t+h)4(6t4)h=6.\begin{aligned} s '' (t) &= \mathop {\lim }\limits_{h \to 0} \frac{s ' (t + h) −s ' (t)} {h }\\ &= \mathop {\lim }\limits_{h \to 0} \frac{6 (t + h) −4− (6t − 4)} {h}\\ &= 6. \end{aligned} Por tanto, a=6m/s2a = 6 m /s^2.