Solución

Supongamo que LL es candidato a límite. Elegimos ϵ=1/2.\epsilon = 1/2.

Sea δ>0.\delta > 0.

Se cumple L0L \ge 0 o L<0L < 0. Si L0L \ge 0, entonces sea x=δ/2x = −\delta / 2. Así, x0=δ20=δ2<δ\left| {x - 0} \right| = \left| { - {\delta \over 2} - 0} \right| = {\delta \over 2} < \delta y δ2δ2L=1L=L+11>12=ε\left| {{{\left| { - {\delta \over 2}} \right|} \over { - {\delta \over 2}}} - L} \right| = \left| { - 1 - L} \right| = L + 1 \ge 1 > {1 \over 2} = \varepsilon Por otro lado, si L<0L < 0, entonces sea x=δ/2x = \delta / 2. Así, x0=δ20=δ2<δ\left| {x - 0} \right| = \left| {{\delta \over 2} - 0} \right| = {\delta \over 2} < \delta y δ2δ2L=1L=L+11>12=ε\left| {{{\left| {{\delta \over 2}} \right|} \over {{\delta \over 2}}} - L} \right| = \left| {1 - L} \right| = \left| L \right| + 1 \ge 1{\rm{ > }}{1 \over 2} = \varepsilon Por tanto, para cualquier valor de LL, limx0xxL\mathop {\lim }\limits_{x \to 0} {{\left| x \right|} \over x} \ne L