Así, limt→9t−9t−3=limt→9(t−9)(t+3)(t−3)(t+3)=limt→9(t+3)=6\mathop {\lim }\limits_{t \to 9} {{t - 9} \over {\sqrt t - 3}} = \mathop {\lim }\limits_{t \to 9} {{\left( {t - 9} \right)\left( {\sqrt t + 3} \right)} \over {\left( {\sqrt t - 3} \right)\left( {\sqrt t + 3} \right)}} = \mathop {\lim }\limits_{t \to 9} \left( {\sqrt t + 3} \right) = 6t→9limt−3t−9=t→9lim(t−3)(t+3)(t−9)(t+3)=t→9lim(t+3)=6