Así, limx→4x2−16x−4=limt→4(x+4)(x−4)x−4=8\mathop {\lim }\limits_{x \to 4} {{{x^2} - 16} \over {x - 4}} = \mathop {\lim }\limits_{t \to 4} {{\left( {x + 4} \right)\left( {x - 4} \right)} \over {x - 4}} = 8x→4limx−4x2−16=t→4limx−4(x+4)(x−4)=8