Así, limx→1/22x2+3x−22x−1=limx→1/2(2x−1)(x+2)2x−1=52\mathop {\lim }\limits_{x \to 1/2} {{2{x^2} + 3x - 2} \over {2x - 1}} = \mathop {\lim }\limits_{x \to 1/2} {{\left( {2x - 1} \right)\left( {x + 2} \right)} \over {2x - 1}} = {5 \over 2}x→1/2lim2x−12x2+3x−2=x→1/2lim2x−1(2x−1)(x+2)=25